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Chapter 22 Developing Efficient 
Algorithms 
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Executing Time  
 Suppose two algorithms perform the same task such as search 
(linear search vs. binary search). Which one is better? One 
possible approach to answer this question is to implement these 
algorithms in Java and run the programs to get execution time. 
But there are two problems for this approach: 

 
§  First, there are many tasks running concurrently on a computer. 

The execution time of a particular program is dependent on the 
system load.   

§  Second, the execution time is dependent on specific input. 
Consider linear search and binary search for example. If an 
element to be searched happens to be the first in the list, linear 
search will find the element quicker than binary search.  
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Growth Rate  
 It is very difficult to compare algorithms by measuring 
their execution time. To overcome these problems, a 
theoretical approach was developed to analyze 
algorithms independent of computers and specific input. 
This approach approximates the effect of a change on the 
size of the input. In this way, you can see how fast an 
algorithm’s execution time increases as the input size 
increases, so you can compare two algorithms by 
examining their growth rates. 
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Big O Notation  
Consider linear search. The linear search algorithm compares the 
key with the elements in the array sequentially until the key is 
found or the array is exhausted. If the key is not in the array, it 
requires n comparisons for an array of size n. If the key is in the 
array, it requires n/2 comparisons on average. The algorithm’s 
execution time is proportional to the size of the array. If you 
double the size of the array, you will expect the number of 
comparisons to double. The algorithm grows at a linear rate. The 
growth rate has an order of magnitude of n. Computer scientists 
use the Big O notation to abbreviate for “order of magnitude.” 
Using this notation, the complexity of the linear search 
algorithm is O(n), pronounced as “order of  n.” 
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Best, Worst, and Average Cases  
For the same input size, an algorithm’s execution time may vary, 
depending on the input. An input that results in the shortest execution 
time is called the best-case input and an input that results in the 
longest execution time is called the worst-case input. Best-case and 
worst-case are not representative, but worst-case analysis is very 
useful. You can show that the algorithm will never be slower than the 
worst-case. An average-case analysis attempts to determine the 
average amount of time among all possible input of the same size. 
Average-case analysis is ideal, but difficult to perform, because it is 
hard to determine the relative probabilities and distributions of 
various input instances for many problems. Worst-case analysis is 
easier to obtain and is thus common. So, the analysis is generally 
conducted for the worst-case. 
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Ignoring Multiplicative Constants  
The linear search algorithm requires n comparisons in the worst-case 
and  n/2 comparisons in the average-case. Using the Big  O notation, 
both cases require  O(n) time. The multiplicative constant (1/2) can be 
omitted. Algorithm analysis is focused on growth rate. The 
multiplicative constants have no impact on growth rates. The growth 
rate for  n/2 or 100n is the same as n, i.e., O(n) = O(n/2) = O(100n). 
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Ignoring Non-Dominating Terms 
Consider the algorithm for finding the maximum number in 
an array of n elements. If  n is 2, it takes one comparison to 
find the maximum number. If n is 3, it takes two 
comparisons to find the maximum number. In general, it 
takes n-1 times of comparisons to find maximum number in 
a list of  n elements. Algorithm analysis is for large input 
size. If the input size is small, there is no significance to 
estimate an algorithm’s efficiency. As n grows larger, the n 
part in the expression n-1 dominates the complexity. The 
Big  O notation allows you to ignore the non-dominating 
part (e.g., -1 in the expression n-1) and highlight the 
important part (e.g., n in the expression n-1). So, the 
complexity of this algorithm is O(n). 
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Useful Mathematic Summations 
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Examples: Determining Big-O 

§  Repetition 

§  Sequence  

§  Selection 

§  Logarithm 
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Repetition: Simple Loops 

T(n) = (a constant c) * n = cn = O(n) 

for (i = 1; i <= n; i++) { 
  k = k + 5; 
} constant time 

executed 
n times 

Ignore multiplicative constants (e.g., “c”). 

Time Complexity 
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Repetition: Nested Loops 

T(n) = (a constant c) * n * n = cn2 = O(n2) 

for (i = 1; i <= n; i++) { 
  for (j = 1; j <= n; j++) { 
    k = k + i + j; 
  } 
} 

constant time 

executed 
n times 

Ignore multiplicative constants (e.g., “c”). 

Time Complexity 

inner loop 
executed 
n times 
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Repetition: Nested Loops 

T(n) = c + 2c + 3c + 4c + … + nc = cn(n+1)/2 = 
(c/2)n2 + (c/2)n = O(n2) 

for (i = 1; i <= n; i++) { 
  for (j = 1; j <= i; j++) { 
    k = k + i + j; 
  } 
} 

constant time 

executed 
n times 

Ignore non-dominating terms 

Time Complexity 

inner loop 
executed 
i times 

Ignore multiplicative constants 
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Repetition: Nested Loops 

T(n) = 20 * c * n = O(n) 

for (i = 1; i <= n; i++) { 
  for (j = 1; j <= 20; j++) { 
    k = k + i + j; 
  } 
} 

constant time 

executed 
n times 

Time Complexity 

inner loop 
executed 
20 times 

Ignore multiplicative constants (e.g., 20*c) 
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Sequence 

T(n) = c *10 + 20 * c * n = O(n) 

for (i = 1; i <= n; i++) { 
  for (j = 1; j <= 20; j++) { 
    k = k + i + j; 
  } 
} 

executed 
n times 

Time Complexity 

inner loop 
executed 
20 times 

for (j = 1; j <= 10; j++) { 
  k = k + 4; 
} 

executed 
10 times 
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Selection 

T(n) = test time + worst-case (if, else) 
        = O(n) + O(n) 
        = O(n) 

if (list.contains(e)) { 
  System.out.println(e); 
} 
else 
  for (Object t: list) { 
    System.out.println(t); 
  } 

Time Complexity 

Let n be  
list.size(). 
Executed 
n times. 

O(n) 
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Constant Time 
The Big O notation estimates the execution time of an algorithm in 
relation to the input size. If the time is not related to the input size, the 
algorithm is said to take constant time with the notation O(1).  For 
example, a method that retrieves an element at a given index in an 
array takes constant time, because it does not grow as the size of the 
array increases. 
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Common Recurrence Relations 
  Recurrence Relation                    Result              Example 

 

)1()2/()( OnTnT +=                 )(log)( nOnT =      Binary search, Euclid’s GCD 

)1()1()( OnTnT +−=                 )()( nOnT =         Linear search 

)1()2/(2)( OnTnT +=                )()( nOnT =                

)()2/(2)( nOnTnT +=               )log()( nnOnT =     Merge sort (Chapter 24)           

)log()2/(2)( nnOnTnT +=          )log()( 2 nnOnT =               

)()1()( nOnTnT +−=                )()( 2nOnT =         Selection sort, insertion sort 

)1()1(2)( OnTnT +−=               )2()( nOnT =         Towers of Hanoi 

)1()2()1()( OnTnTnT +−+−=     )2()( nOnT =         Recursive Fibonacci algorithm      
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Comparing Common Growth Functions 

)2()()()log()()(log)1( 32 nOnOnOnnOnOnOO <<<<<<

)1(O Constant time 
)(lognO Logarithmic time  

)(nO Linear time  
)log( nnO Log-linear time  

)( 2nO Quadratic time  
)( 3nO Cubic time  
)2( nO Exponential time  
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Comparing Common Growth Functions 

)2()()()log()()(log)1( 32 nOnOnOnnOnOnOO <<<<<<

 

O(1) 

O(logn) 

O(n) 

O(nlogn) 

O(n2) 
O(2n) 
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Practical Considerations 

The big O notation provides a good theoretical 
estimate of algorithm efficiency. However, two 
algorithms of the same time complexity are not 
necessarily equally efficient.  


