
Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 1

Chapter 22 Developing Efficient
Algorithms

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 2

Executing Time
 Suppose two algorithms perform the same task such as search
(linear search vs. binary search). Which one is better? One
possible approach to answer this question is to implement these
algorithms in Java and run the programs to get execution time.
But there are two problems for this approach:

§  First, there are many tasks running concurrently on a computer.

The execution time of a particular program is dependent on the
system load.

§  Second, the execution time is dependent on specific input.
Consider linear search and binary search for example. If an
element to be searched happens to be the first in the list, linear
search will find the element quicker than binary search.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 3

Growth Rate
 It is very difficult to compare algorithms by measuring
their execution time. To overcome these problems, a
theoretical approach was developed to analyze
algorithms independent of computers and specific input.
This approach approximates the effect of a change on the
size of the input. In this way, you can see how fast an
algorithm’s execution time increases as the input size
increases, so you can compare two algorithms by
examining their growth rates.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 4

Big O Notation
Consider linear search. The linear search algorithm compares the
key with the elements in the array sequentially until the key is
found or the array is exhausted. If the key is not in the array, it
requires n comparisons for an array of size n. If the key is in the
array, it requires n/2 comparisons on average. The algorithm’s
execution time is proportional to the size of the array. If you
double the size of the array, you will expect the number of
comparisons to double. The algorithm grows at a linear rate. The
growth rate has an order of magnitude of n. Computer scientists
use the Big O notation to abbreviate for “order of magnitude.”
Using this notation, the complexity of the linear search
algorithm is O(n), pronounced as “order of n.”

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 5

Best, Worst, and Average Cases
For the same input size, an algorithm’s execution time may vary,
depending on the input. An input that results in the shortest execution
time is called the best-case input and an input that results in the
longest execution time is called the worst-case input. Best-case and
worst-case are not representative, but worst-case analysis is very
useful. You can show that the algorithm will never be slower than the
worst-case. An average-case analysis attempts to determine the
average amount of time among all possible input of the same size.
Average-case analysis is ideal, but difficult to perform, because it is
hard to determine the relative probabilities and distributions of
various input instances for many problems. Worst-case analysis is
easier to obtain and is thus common. So, the analysis is generally
conducted for the worst-case.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 6

Ignoring Multiplicative Constants
The linear search algorithm requires n comparisons in the worst-case
and n/2 comparisons in the average-case. Using the Big O notation,
both cases require O(n) time. The multiplicative constant (1/2) can be
omitted. Algorithm analysis is focused on growth rate. The
multiplicative constants have no impact on growth rates. The growth
rate for n/2 or 100n is the same as n, i.e., O(n) = O(n/2) = O(100n).

f(n)

n

100

200

n n/2 100n

100

200

50

100

10000

20000

2 2 2 f(200) / f(100)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 7

Ignoring Non-Dominating Terms
Consider the algorithm for finding the maximum number in
an array of n elements. If n is 2, it takes one comparison to
find the maximum number. If n is 3, it takes two
comparisons to find the maximum number. In general, it
takes n-1 times of comparisons to find maximum number in
a list of n elements. Algorithm analysis is for large input
size. If the input size is small, there is no significance to
estimate an algorithm’s efficiency. As n grows larger, the n
part in the expression n-1 dominates the complexity. The
Big O notation allows you to ignore the non-dominating
part (e.g., -1 in the expression n-1) and highlight the
important part (e.g., n in the expression n-1). So, the
complexity of this algorithm is O(n).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 8

Useful Mathematic Summations

12
1222....2222

1
1....

2
)1()1(....321

1
)1(3210

1
)1(3210

−
−

=++++++

−
−

=++++++

+
=+−++++

+
−

+
−

n
nn

n
nn

a
aaaaaaa

nnnn

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 9

Examples: Determining Big-O

§  Repetition

§  Sequence

§  Selection

§  Logarithm

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 10

Repetition: Simple Loops

T(n) = (a constant c) * n = cn = O(n)

for (i = 1; i <= n; i++) {
 k = k + 5;
} constant time

executed
n times

Ignore multiplicative constants (e.g., “c”).

Time Complexity

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 11

Repetition: Nested Loops

T(n) = (a constant c) * n * n = cn2 = O(n2)

for (i = 1; i <= n; i++) {
 for (j = 1; j <= n; j++) {
 k = k + i + j;
 }
}

constant time

executed
n times

Ignore multiplicative constants (e.g., “c”).

Time Complexity

inner loop
executed
n times

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 12

Repetition: Nested Loops

T(n) = c + 2c + 3c + 4c + … + nc = cn(n+1)/2 =
(c/2)n2 + (c/2)n = O(n2)

for (i = 1; i <= n; i++) {
 for (j = 1; j <= i; j++) {
 k = k + i + j;
 }
}

constant time

executed
n times

Ignore non-dominating terms

Time Complexity

inner loop
executed
i times

Ignore multiplicative constants

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 13

Repetition: Nested Loops

T(n) = 20 * c * n = O(n)

for (i = 1; i <= n; i++) {
 for (j = 1; j <= 20; j++) {
 k = k + i + j;
 }
}

constant time

executed
n times

Time Complexity

inner loop
executed
20 times

Ignore multiplicative constants (e.g., 20*c)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 14

Sequence

T(n) = c *10 + 20 * c * n = O(n)

for (i = 1; i <= n; i++) {
 for (j = 1; j <= 20; j++) {
 k = k + i + j;
 }
}

executed
n times

Time Complexity

inner loop
executed
20 times

for (j = 1; j <= 10; j++) {
 k = k + 4;
}

executed
10 times

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 15

Selection

T(n) = test time + worst-case (if, else)
 = O(n) + O(n)
 = O(n)

if (list.contains(e)) {
 System.out.println(e);
}
else
 for (Object t: list) {
 System.out.println(t);
 }

Time Complexity

Let n be
list.size().
Executed
n times.

O(n)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 16

Constant Time
The Big O notation estimates the execution time of an algorithm in
relation to the input size. If the time is not related to the input size, the
algorithm is said to take constant time with the notation O(1). For
example, a method that retrieves an element at a given index in an
array takes constant time, because it does not grow as the size of the
array increases.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 17

Common Recurrence Relations
 Recurrence Relation Result Example

)1()2/()(OnTnT +=)(log)(nOnT = Binary search, Euclid’s GCD

)1()1()(OnTnT +−=)()(nOnT = Linear search

)1()2/(2)(OnTnT +=)()(nOnT =

)()2/(2)(nOnTnT +=)log()(nnOnT = Merge sort (Chapter 24)

)log()2/(2)(nnOnTnT +=)log()(2 nnOnT =

)()1()(nOnTnT +−=)()(2nOnT = Selection sort, insertion sort

)1()1(2)(OnTnT +−=)2()(nOnT = Towers of Hanoi

)1()2()1()(OnTnTnT +−+−=)2()(nOnT = Recursive Fibonacci algorithm

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 18

Comparing Common Growth Functions

)2()()()log()()(log)1(32 nOnOnOnnOnOnOO <<<<<<

)1(O Constant time
)(lognO Logarithmic time

)(nO Linear time
)log(nnO Log-linear time

)(2nO Quadratic time
)(3nO Cubic time
)2(nO Exponential time

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 19

Comparing Common Growth Functions

)2()()()log()()(log)1(32 nOnOnOnnOnOnOO <<<<<<

O(1)

O(logn)

O(n)

O(nlogn)

O(n2)
O(2n)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved.

20

Practical Considerations

The big O notation provides a good theoretical
estimate of algorithm efficiency. However, two
algorithms of the same time complexity are not
necessarily equally efficient.

