
1

1http://xkcd.com/1185/
CS 1331 (Georgia Tech) Algorithms 1 / 21

http://xkcd.com/1185/


Introduction to Object-Oriented Programming
Algorithms

Christopher Simpkins
chris.simpkins@gatech.edu

CLRS
CS 1331 (Georgia Tech) Algorithms 2 / 21

http://mitpress.mit.edu/books/introduction-algorithms


Algorithms

An algorithm is a sequence of operations that accomplishes a task, or
solves a problem. We demand that an algorithm be

correct – if the algorithm’s input satisfies the algorithm’s
assumptions, the algorithm always produces correct output –

and want an algorithm to be
efficient – the algorithm uses the least amount of resources
necessary to accomplish its task.

Today we’ll learn how to analyze the efficiency of an algorithm in the
context of two fundamental problems in computation: searching and
sorting. First we’ll briefly touch on correctness using loop invariants.

CS 1331 (Georgia Tech) Algorithms 3 / 21



The Sorting Problem

Sorting means rearranging the elements of an array (or permuting the
array) so that the elements are in a well-defined order. For example,
we can sort an array in non-decreasing order (ascending) so that each
element A[i] ≤ A[i + 1] for i = 1 . . . n − 1.

Note that we don’t define a separate output, only a result, or effect.

In today’s discussion we’ll assume that our input is an array
whose elements are integers. We’ve already seen how to
generalize to arbitray user-defined types.

CS 1331 (Georgia Tech) Algorithms 4 / 21



Insertion Sort

The insertion sort algorithm in pseudocode (from CLRS Chapter 2):
1 for j = 2 to A.length // A[1 .. A.length] is an array
2 key = A[j]
3 // Insert A[j] into the sorted sequence A[1 .. j - 1].
4 i = j - 1
5 while i > 0 and A[i] > key
6 A[i + 1] = A[i]
7 i = i - 1
8 A[i + 1] = key

Note the following conventions we use when describing algorithms
abstractly:

we use pseudocode instead of code in a particular programming
language,
the array indices start at 1 instead of 0, and
the array has a property length so that we don’t have to specify
the array’s size separately.

CS 1331 (Georgia Tech) Algorithms 5 / 21



Loop Invariants

A loop invariant expresses a formal property of an algorithm that:
is true prior to the first iteration of the loop,
if it is true before an iteration of the loop remains true before the
next iteration, and
upon loop termination gives a useful property that helps show that
the algorithm is correct.

CS 1331 (Georgia Tech) Algorithms 6 / 21



A Loop Invariant for Insertion Sort

1 for j = 2 to A.length
2 key = A[j]
3 // Insert A[j] into the sorted sequence A[1 .. j - 1].
4 i = j - 1
5 while i > 0 and A[i] > key
6 A[i + 1] = A[i]
7 i = i - 1
8 A[i + 1] = key

At the start of each iteration of the for loop of lines 1-8, the
subarray A[1 .. j - 1] consists of the elements originally in A[1
.. j - 1], but in sorted order.

CS 1331 (Georgia Tech) Algorithms 7 / 21



Expresing Loop Invariants as assertions

Insertion sort in Java (note translation to 0-based indexes):
for (int j = 1; j < a.length; ++j) {

assert isSorted(a, 0, j - 1);
int key = a[j];
int i = j - 1;
while(i >= 0 && a[i] > key) {

a[i + 1] = a[i];
i = i - 1;

}
a[i + 1] = key;

}

Note that we didn’t express the entire invariant in Java. We could, but
you must trade off implementation effort and benefit. Run the program
with the -ea switch to enable assertions:
$ java -ea InsertionSort

See InsertionSort.java.

CS 1331 (Georgia Tech) Algorithms 8 / 21

http://www.cs1331.org/code/algorithms/InsertionSort.java


The Search Problem

The search problem is defined formally by the following input-output
specifications:

Input: A sequence of n elements A =< a1,a2, ...,an > and a value
v
Output: An index i such that v = A[i], or a special value such as -1
or nil if v does not appear in A.

We’ll see that the assumptions we can make about the input affects
the efficiency of the algorhtms we can use to search it.

CS 1331 (Georgia Tech) Algorithms 9 / 21



Linear Search

If we can make no assumptions about the order of the array, our only
option is linear search:
// A is an array, and v is the value we’re searching for
LINEAR-SEARCH(A, v):
for i = 1 to A.length

if A[i] = v then
return i

return -1

We’ll be dealing with search algorithms abstractly for the purpose of
discussing running time analysis, but example implementations are
available in Search.java.

CS 1331 (Georgia Tech) Algorithms 10 / 21

http://www.cs1331.org/code/algorithms/Search.java


Algorithmic Efficiency

We can characterize algorithmic efficiency in terms of space
complexity (how much storage an algorithm requires) or time
complexity (how “fast” an algorithm runs). Almost always primarily
concerned with time complexity.

Note that we want to eliminate platform-specific factors, like speed
of the particular computer an algorithm runs on.

So we characterize algorithm performance in terms of
input size, n, and
order of growth as a function of input size.

An efficient algorithm beats an inefficient one even if the inefficient
algortithm is run on a far superior computer.

CS 1331 (Georgia Tech) Algorithms 11 / 21



Efficiency of Linear Search

Assuming each operation has a fixed cost, we can count the
operations performed for a worst-case input as follows:

Step Cost Times
for i = 1 to A.length c1 n

if A[i] = v then c2 n
return i c3 0

return -1 c4 1

Adding up the number of times each statement is executed we get:

T (n) = c1n + c2n + c4 = (c1 + c2)n + c4

We discard contant terms, constant factors, and lower-order terms to
say that the worst case running time is

O(n)

And pronounce this “order n” or “Big-O of n.”
CS 1331 (Georgia Tech) Algorithms 12 / 21



Binary Search
If the array is sorted you can use a binary search:
BINARY-SEARCH(A, v):
p := 1, r := A.length
while p ≤ r

q := b(p + r)/2c
if A[q] = v then

return q
if A[q] > v then

r := q - 1
else

p = q + 1
return -1

Intuitively: We check the midpoint of the array (q).
If the array is empty (p > r), the query value was not found.
If the midpoint holds the value, return the midpoint.
If the midpoint holds a value greater than our search value, repeat
the process with the lower half of the array.
If the midpoint holds a value less than our search value, repeat
the process with the upper half of the array.

CS 1331 (Georgia Tech) Algorithms 13 / 21



Efficiency of Binary Search

The key to analyzing the efficiency of BINARY-SEARCH is realizing
that the array is halved in each iteration of the while loop.

In the worst case BINARY-SEARCH runs until the size of the array
(r − p) goes from n to 1 by successive halving.
This is equivalent to going from 1 to n by successive doubling.

Counting the number of times x we need to double to get from 1 to n is

2x = n

so
x = lg n

and the worst-case running time of BINARY-SEARCH is

O(lg n)

CS 1331 (Georgia Tech) Algorithms 14 / 21



Efficiency of Insertion Sort (Worst Case)

Step Cost Times
1: for j = 2 to A.length c1 n
2: key = A[j] c2 n − 1
3: // Insert A[j] into sorted A[i .. j - 1].
4: i = j - 1 c4 n − 1
5: while i > 0 and A[i] > key c5

∑n
j=2 j

6: A[i + 1] = A[i] c6
∑n

j=2(j − 1)
7: i = i - 1 c7

∑n
j=2(j − 1)

8: A[i + 1] = key c8 n − 1

Noting the sum of the arithmetic series
∑n

1 x = n(n−1)
2 = 1

2n(n + 1),
adding the running times, simplifying, discarding constant terms and
factors, and lower-order terms we get:

O(n2)

CS 1331 (Georgia Tech) Algorithms 15 / 21



Run-time Analysis Summary: Linear

Sample pseudocode:
for i := 1 to n

// ...

Java implementation:
for (int i = 0; i < n; i++) {

// ...
}

Intuition:
“For each of the n elements,” or “for n times.”

Big-O:
O(n)

CS 1331 (Georgia Tech) Algorithms 16 / 21



Run-time Analysis Summary: Quadratic

Sample pseudocode:
for i := 1 to n

for j := 1 to n

Java implementation:
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
// ...

}
}

Intuition:
“n times for each n”

Big-O:
O(n2)

CS 1331 (Georgia Tech) Algorithms 17 / 21



Run-time Analysis Summary: Also Quadratic

Sample pseudocode:
for i := 1 to n

for j := 1 to i

Java implementation:
for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {
// ...

}
}

Intuition:
For each i = 1..n, count up to i
This is sum of the the arithmetic series:∑n

1 x = n(n−1)
2 = 1

2n(n + 1) = 1
2n2 + 1

2n
Big-O:

O(n2)

CS 1331 (Georgia Tech) Algorithms 18 / 21



Run-time Analysis Summary: Logarithmic (1 of 2)
Sample pseudocode:
p := 1, r := n
while p ≤ r

// cut difference between p and r in half until it’s 0...

Java implementation:
int lo = 0, hi = array.length - 1;
while (lo <= hi) {

int middle = (lo + hi)/2;
// either lo becomes middle + 1, or hi becomes middle - 1

}

Intuition:
Each iteration of the loop cuts the remaining input in half. We stop
when we’ve cut the input size to 1.
Mathematically, we’re multiplying the input size by 1

2 each time.

Run-time is the number of times we multiply by 1
2

Mathematically ...

CS 1331 (Georgia Tech) Algorithms 19 / 21



Run-time Analysis Summary: Logarithmic (2 of 2)

p := 1, r := n
while p ≤ r

// cut difference between p and r in half until it’s 0...

Run-time is the number of times x we multiply by 1
2 :

1
2x n = 1

1
2x =

1
n

2x = n
x = log2 n

So Big-O is:
O(log n)

CS 1331 (Georgia Tech) Algorithms 20 / 21



Closing Thoughts

Algorithms and data structures are two sides of the same coin
Data structures affect the kinds of algorithms that can operate on
the data
Operations on data structures are defined by algorithms
Abstract data types package data structures with their associated
algorithms

CS 1331 (Georgia Tech) Algorithms 21 / 21


