Introduction to Object-Oriented Programming
Arrays

Christopher Simpkins

chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) 1/19

Modeling Aggregates

As you’ve seen, you can get pretty far with "scalar" data. But many
phenomena we wish to model computationally are aggregates, or
collections, for example:

B scores on assignments in a class,
m word counts in a document, or
m pixel colors in a bitmap image.

Today we’ll learn Java’s most basic facility for modeling aggregates:
arrays.

CS 1331 (Georgia Tech) 2/19

Java Arrays (JLS §10):
m are objects,
m are dynamically allocated (e.g., with operator new), and
m have a fixed number of elements of the same type.

CS 1331 (Georgia Tech) 3/19

http://docs.oracle.com/javase/specs/jls/se8/html/jls-10.html

Creating Arrays

Consider the following array creation expression (JLS §10.3):

double[] scores = new double[5];

This declaration:
m allocates a 5-element array,

m the 5 in the example above can be any expression that is unary
promotable to an int (JLS §5.6.1)

m stores the address of this new array in scores, and

m initializes each value to it's default value (0 for numeric types,
false for boolean types, and null for references, JLS §4.12.5).

CS 1331 (Georgia Tech) 4/19

http://docs.oracle.com/javase/specs/jls/se8/html/jls-10.html#jls-10.3
http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.6.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.12.5

Array Declarations

The preceding array definition

double[] scores = new double[5];

could be split into a declaration and initialization:

double[] scores;
scores = new double[5];

Also, you can put the [] on the type or the variable name when
delaring an array. These two declarations are equivalent:

double[] scores;
double scores|(];

Generally, it's better style to put the [] on the type.

CS 1331 (Georgia Tech) 5/19

Mixed Declarations

Note that you can mix aray declarations with declarations of variables
having the same element type. The declaration line:

double scores[], average;

creates
m an array of double reference named scores, and
B a double variable named average

What'’s the size of the scores array declared above?

CS 1331 (Georgia Tech) 6/19

Array Objects

After the definition:

double[] scores = new double[5]; ‘

scores points to an array object in memory that can be visualized as:

0 1 2 3 4
[00 J00 J00 [00 [00 |

The indexes of scores range from 0 to 4. The size of arrays are
stored in a public final instance variable named length

scores.length == 5;

What is the type and value of the expression above?

CS 1331 (Georgia Tech) 7/19

Accessing Array Elements

Array elements are accessed with an int-promotable expression
enclosed in square brackets ([1)

double[] scores = new double[5];
scores[0] = 89;

scores[1l] = 100;

scores[2] = 95.6;

scores[3] = 84.5;

scores[4] = 91;
scores[scores.length - 1] = 99.2;

Will this line compile? If so, what will happen at runtime?

scores[scores.length] = 100; ‘

CS 1331 (Georgia Tech) 8/19

Initializing Arrays

You can provide initial values for (small) arrays

String[] validSuits =

{"diamonds", "clubs", "hearts", "spades"};

m Whatis validSuits.length?
m Whatis validSuits[1]?

You can also use a loop to initialize the values of an array:

int[] squares = new int[5];
for (int i = 0; i < squares.length; ++i) {
squares[i] = 1ixi;

}

What is squares[4]1?

CS 1331 (Georgia Tech) 9/19

Traversing Arrays

Arrays and for statements go hand-in-hand:

double[] scores = new double[5];
for (int 1 = 0; i < 5; ++1) {
System.out .printf ("scores|[%d]

%.2f%n", i, scores[i]);

}

You can also use the “enhanced” for loop:

for (double score: scores) {
System.out.println(score);

}

Read the enhanced for loop as “for each element of the array ...".

Why use for-each instead of traditional for? ...

CS 1331 (Georgia Tech)

10/19

Traditional for Versus for-each

In cases where you don’t need the index, use the enhanced for loop.
Consider:

double sum = 0.0;
for (int i = 0; 1 < scores.length; ++i) {
sum += scores[i];

}

In the code above, scores.length is used only for bounding the
array traversal, and the index i is only used for sequential array
access. Those are two things we can mess up. The enhanced for loop
is cleaner:

double sum = 0.0;
for (double score: scores) {
sum += score;

}

Also note how our naming conventions help to make the code clear.
You can read the loop above as “for each score in scores”.

CS 1331 (Georgia Tech) 11/19

Array Initialization and Access Gotchas

Because arrays are allocated dynamically, this will compile:

double[] scores = new double[-5];

but will produce an error at run-time:

Exception in thread "main" java.lang.NegativeArraySizeException
at ArrayBasics.main (ArrayBasics.java:4)

Also, array access expressions are evaluated and checked at run-time.
So, in the same way that accessing an array with an index > the size
of the array produces a run-time error, negative indexes like:

scores[-1] = 100;
produce:
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: -1

at ArrayBasics.main (ArrayBasics.java:23)

CS 1331 (Georgia Tech) 12/19

Arrays as Method Parameters - main

We’ve already seen an array parameter:

‘public static void main(String[] args)

We can use this array just like we use any other array.

public class Shout {

public static void main(String[] args) {
for (String arg: args) {
System.out.print (arg.toUpperCase() + " ");
}
System.out.println();

}

See also CourseAverage.java

CS 1331 (Georgia Tech) 13/19

http://www.cs1331.org/code/arrays/CourseAverage.java

Variable Arity Parameters

m The arity of a method is its number of formal parameters.
m So far, all the methods we’ve written have fixed arity.

m The last parameter to a method may be a variable arity parameter,
a.k.a. var args parameter (JLS §8.4.1), whose syntax is simply to
add an ellipse (. . .) after the type name.

m The var args parameter is accessed as an array inside the

method.
For example:
public static int max (int ... numbers) {
int max = numbers[0];
for (int i = 1; i < numbers.length; ++i) {
if (numbers[i] > max) max = number;

}

return max;

CS 1331 (Georgia Tech) 14/19

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1

Multidimensional Arrays

You can create arrays of any number of dimensions simply by adding
additional square brackets for dimensions and sizes. For example:

char[][] grid;

The declaration statement above:
m Declares a 2-dimensional array of char.
m As with one-dimensinal arrays, char is the base type.

m Each element of grid, which is indexed by two int expressions,
is a char variable.

CS 1331 (Georgia Tech) 15/19

Initializing Multidimensional Arrays

Initialization of 2-dimensional arrays can be done with new:

grid = new char[10][10];

or with literal initialization syntax:

S P 4 14 4 14 14 14 4 4 4 14 4 r 4 4 14 ’ r r 4 14
char[][] grid = {{ ’ ’ ’ ’ ’ ’ ’ ’ ’ b
N R A R S Y S A S
{ ;T ’ ’ ’ ’ ’ P s
{ P ’ ’ ’ ’ ’ P by
{ , ’ ’ pEy T, ’ ’ , by
4 4 r’ 4 4 4 4 ’ 4 4 4 4 r 4 4 4 4 4 r’ 4
(’ 4 4 r * 4 * 14 r ’ r }I
{ ;I ’ , ’ ’ ’ P by
4 4 4 4 4 4 14 ’ 4 4 4 4 ’ 4 4 4 4 14 4 4
{ ’ P ’ ’ ’ P ’ }y
{ ’ ’ R MRS AR AR ’ ’ b
{! r 4 14 14 r r 4 14 14 r 14 4 4 14 14 r r 4 l}}.
’ r 4 4 4 ’ 4 4 ’ r

Notice that a 2-dimensional array is an array of 1-dimensional arrays
(and a 3-dimensional array is an array of 2-dimensional arrays, and so
on).

CS 1331 (Georgia Tech) 16/19

Visualizing Multidimensional Arrays

Our 2-dimensional grid array can be visualized as a 2-d grid of cells.

0] [11 [2 [3] [4] 1[5 [6] [7] [8] [9]

grid[0]
grid[1]
gridi2] T P T o e [[
grid[a] [7 e T T e e [
gridi4] |’ [T o
grid[d) | " |’ | o
gridie] | > [[T T
gridf7]| " [[o
O T N R R R I I I I
grid[9] | *° ” »’ ” ’ » ” V o B

And an individual cell can be accessed by supplying two indices:

grid[3][2] == "«'; // true ‘

CS 1331 (Georgia Tech) 17/19

Traversing Multidimensional Arrays

Traverse 2-dimensional array by nesting loops. The key to getting it
right is to use the right 1engths.

for (int row = 0; row < grid.length; ++row) {
for (int col = 0; col < grid[row].length; ++col) {
System.out.print (grid[row] [col]);

}
System.out.println();
}

Note that the for loops above traverse the grid in row-major order. We
can traverse the grid in column-major order by reversing the nesting of
the for loops:

for (int col = 0; col < grid[0].length; ++col) {
for (int row = 0; row < grid.length; ++row) {
System.out.print (grid[row] [col]);

}
System.out.println();
}

See Smiley.java
CS 1331 (Georgia Tech) 18/19

http://www.cs1331.org/code/arrays/Smiley.java

Closing Thoughts

m Arrays are our first “collection classes” (but are not Java
Collection classes).

m Arrays are objects, so array objects are created with operator new
and array variables can have the value null.

m Arrays have sugar to add convenience and make them
syntactically similar to C’s arrays.

CS 1331 (Georgia Tech) 19/19

