
Introduction to Object-Oriented Programming
Arrays, Part 1 of 2

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 1 / 14



Modeling Aggregates

As you’ve seen, you can get pretty far with "scalar" data. But many
phenomena we wish to model computationally are aggregates, or
collections, for example:

scores on assignments in a class,
word counts in a document, or
pixel colors in a bitmap image.

Today we’ll learn Java’s most basic facility for modeling such
phenomena: arrays.

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 2 / 14



Arrays

Java Arrays (JLS §10):
are objects,
are dynamically allocated (e.g., with operator new), and
have a fixed number of elements of the same type.

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 3 / 14

http://docs.oracle.com/javase/specs/jls/se8/html/jls-10.html


Creating Arrays

Consider the following array creation expression (JLS §10.3):
double[] scores = new double[5];

This declaration:
allocates a 5-element array,
the 5 in the example above can be any expression that is unary
promotable to an int (JLS §5.6.1)
stores the address of this new array in scores, and
initializes each value to it’s default value (0 for numeric types,
false for boolean types, and null for references, JLS §4.12.5).

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 4 / 14

http://docs.oracle.com/javase/specs/jls/se8/html/jls-10.html#jls-10.3
http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.6.1
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.12.5


Array Declarations

The preceding array definition
double[] scores = new double[5];

could be split into a declaration and initialization:
double[] scores;
scores = new double[5];

Also, you can put the [] on the type or the variable name when
delaring an array. These two declarations are equivalent:
double[] scores;
double scores[];

Generally, it’s better style to put the [] on the type.

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 5 / 14



Mixed Declarations

Note that you can mix aray declarations with declarations of variables
having the same element type. The declaration line:
double scores[], average;

creates
an array of double reference named scores, and
a double variable named average

What’s the size of the scores array declared above?

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 6 / 14



Array Objects

After the definition:
double[] scores = new double[5];

scores points to an array object in memory that can be visualized as:

0 1 2 3 4
0.0 0.0 0.0 0.0 0.0

The indexes of scores range from 0 to 4. The size of arrays are
stored in a public final instance variable named length

scores.length == 5;

What is the type and value of the expression above?

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 7 / 14



Accessing Array Elements

Array elements are accessed with an int-promotable expression
enclosed in square brackets ([])
double[] scores = new double[5];
scores[0] = 89;
scores[1] = 100;
scores[2] = 95.6;
scores[3] = 84.5;
scores[4] = 91;
scores[scores.length - 1] = 99.2;

Will this line compile? If so, what will happen at runtime?
scores[scores.length] = 100;

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 8 / 14



Initializing Arrays

You can provide initial values for (small) arrays
String[] validSuits = {"diamonds", "clubs", "hearts","spades"};

What is validSuits.length?
What is validSuits[1]?

You can also use a loop to initialize the values of an array:
int[] squares = new int[5];
for (int i = 0; i < squares.length; ++i) {

squares[i] = i*i;
}

What is squares[4]?

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 9 / 14



Traversing Arrays

Arrays and for statements go hand-in-hand:
double[] scores = new double[5];
for (int i = 0; i < 5; ++i) {

System.out.printf("scores[%d] = %.2f%n", i, scores[i]);
}

You can also use the “enhanced” for loop:
for (double score: scores) {

System.out.println(score);
}

Read the enhanced for loop as “for each element of the array ...”.

Why use for-each instead of traditional for? ...

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 10 / 14



Traditional for Versus for-each

In cases where you don’t need the index, use the enhanced for loop.
Consider:
double sum = 0.0;
for (int i = 0; i < scores.length; ++i) {

sum += scores[i];
}

In the code above, scores.length is used only for bounding the
array traversal, and the index i is only used for sequential array
access. Those are two things we can mess up. The enhanced for loop
is cleaner:
double sum = 0.0;
for (double score: scores) {

sum += score;
}

Also note how our naming conventions help to make the code clear.
You can read the loop above as “for each score in scores”.

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 11 / 14



Array Initialization and Access Gotchas

Because arrays are allocated dynamically, this will compile:
double[] scores = new double[-5];

but will produce an error at run-time:
Exception in thread "main" java.lang.NegativeArraySizeException

at ArrayBasics.main(ArrayBasics.java:4)

Also, array access expressions are evaluated and checked at run-time.
So, in the same way that accessing an array with an index ≥ the size
of the array produces a run-time error, negative indexes like:
scores[-1] = 100;

produce:
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: -1

at ArrayBasics.main(ArrayBasics.java:23)

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 12 / 14



Arrays as Method Parameters - main

We’ve already seen an array parameter:
public static void main(String[] args)

We can use this array just like we use any other array.
public class Shout {

public static void main(String[] args) {
for (String arg: args) {

System.out.print(arg.toUpperCase() + " ");
}
System.out.println();

}
}

See also CourseAverage.java

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 13 / 14

http://www.cs1331.org/code/arrays/CourseAverage.java


Closing Thoughts

Arrays are our first “collection classes” (but are not Java
Collection classes).
Arrays are objects, so array objects are created with operator new
and array variables can have the value null.
Arrays have sugar to add convenience and make them
syntactically similar to C’s arrays.

CS 1331 (Georgia Tech) Arrays, Part 1 of 2 14 / 14


