Introduction to Object-Oriented Programming
Arrays, Part 2 of 2

Christopher Simpkins

chris.simpkins@gatech.edu

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 1/16

A few more array topics

m Variable arity parameters
m Multi-dimensional arrays
m Partially filled arrays

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 2/16

Variable Arity Parameters

m The arity of a method is its number of formal parameters.
m So far, all the methods we’ve written have fixed arity.

m The last parameter to a method may be a variable arity parameter,
a.k.a. var args parameter (JLS §8.4.1), whose syntax is simply to
add an ellipse (. . .) after the type name.

m The var args parameter is accessed as an array inside the

method.

For example:

public static int max (int ... numbers) {
int max numbers [0];
for (int i = 1; i < numbers.length; ++i) {

if (numbers[i] > max) max number;

}
return max;

}

Chris Simpkins (Georgia Tech) CS 1331

Arrays, Part 2 of 2 3/16

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1

Multidimensional Arrays

You can create arrays of any number of dimensions simply by adding
additional square brackets for dimensions and sizes. For example:

char[][] grid;

The declaration statement above:
m Declares a 2-dimensional array of char.
m As with one-dimensinal arrays, char is the base type.

m Each element of grid, which is indexed by two int expressions,
is a char variable.

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 4/16

Initializing Multidimensional Arrays

Initialization of 2-dimensional arrays can be done with new:

grid = new char[10][10];

or with literal initialization syntax:

S P 4 14 4 14 14 14 4 4 4 14 4 r 4 4 14 ’ r r 4 14
char[][] grid = {{ ’ ’ ’ ’ ’ ’ ’ ’ ’ b
N R A R S Y S A S
{ ;T ’ ’ ’ ’ ’ P s
{ P ’ ’ ’ ’ ’ P by
{ , ’ ’ pEy T, ’ ’ , by
4 4 r’ 4 4 4 4 ’ 4 4 4 4 r 4 4 4 4 4 r’ 4
(’ 4 4 r * 4 * 14 r ’ r }I
{ ;I ’ , ’ ’ ’ P by
4 4 4 4 4 4 14 ’ 4 4 4 4 ’ 4 4 4 4 14 4 4
{ ’ P ’ ’ ’ P ’ }y
{ ’ ’ R MRS AR AR ’ ’ b
{! r 4 14 14 r r 4 14 14 r 14 4 4 14 14 r r 4 l}}.
’ r 4 4 4 ’ 4 4 ’ r

Notice that a 2-dimensional array is an array of 1-dimensional arrays
(and a 3-dimensional array is an array of 2-dimensional arrays, and so
on).

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 5/16

Visualizing Multidimensional Arrays

Our 2-dimensional grid array can be visualized as a 2-d grid of cells.

0] [11 [2 [3] [4] 1[5 [6] [7] [8] [9]

grid[0]
grid[1]
gridi2] T P T o e [[
grid[a] [7 e T T e e [
gridi4] |’ [T o
grid[d) | " |’ | o
gridie] | > [[T T
gridf7]| " [[o
O T N R R R I I I I
grid[9] | *° ” »’ ” ’ » ” V o B

And an individual cell can be accessed by supplying two indices:

grid[3][2] == "«'; // true ‘

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 6/16

Traversing Multidimensional Arrays

Traverse 2-dimensional array by nesting loops. The key to getting it
right is to use the right 1engths.

for (int row = 0; row < grid.length; ++row) {
for (int col = 0; col < grid[row].length; ++col) {
System.out.print (grid[row] [col]);

}
System.out.println();
}

Note that the for loops above traverse the grid in row-major order. We
can traverse the grid in column-major order by reversing the nesting of
the for loops:

for (int col = 0; col < grid[0].length; ++col) {
for (int row = 0; row < grid.length; ++row) {
System.out.print (grid[row] [col]);

}
System.out.println();
}

See Smiley.java

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 7/16

http://www.cc.gatech.edu/~simpkins/teaching/gatech/cs1331/code/arrays/Smiley.java

Ragged Arrays

It’'s possible to create ragged arrays by creating nested arrays of
variable length. For example:

double [][] ragged = new double[3][];
ragged[0] = new double[5];
ragged[l] = new double[1l0];
ragged[2] = new double[4];

Can we traverse array ragged in row-major order?
Can we traverse array ragged in column-major order?

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 8/16

Partially Filled Arrays

Sometimes we only use part of an array:

int[] assignments = new int[10];

int lastAssignment = 0;

assginments[lastAssignment++] = 100;

// As more assignments are graded, more of assignments[] is used ...

Note that we had to keep track of the last used index in the array.

Now that we know how to define classes, we can do better ...

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 9/16

A Partial Int Array ADT

ADT: PartialIntArray
Data:

m elements: int[] - an array of int elements
m size: int - the number of elements currently in use
Operations:
B hew - construct a new PartialIntArray
m add(element: int) - add an element to this PartialIntArray
m get(i: int) - get the ith element of this PartialIntArray
B Size - get the size of this PartialIntArray

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 10/16

PartialIntArray

Constructors:

public class PartiallIntArray {
private int[] elements;
private int size;

public PartialIntArray() {
this (10);
}
public PartialIntArray(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elements = new int[initialCapacity];
}
//
}

Note how the no-arg constructor delegates to the other constructor
with this (...).

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2

11/16

Adding Elements to PartiallntArray

Assuming we don’t need to automatically “grow” our array-backed data
structure when needed (like java.util.ArrayList does), we can

add elements like this:

public class PartiallIntArray {

/]

public void add(int e) {
elements([size++] = e;

}

Chris Simpkins (Georgia Tech)

CS 1331

Arrays, Part 2 of 2

12/16

Accessing Elements of PartiallntArray

We can provide access to elements of our PartiallntArray with:

public class PartiallIntArray {
VA

public int get (int index) {
return elements[index];

}

}

Note that we’re providing access to individual elements, not the entire
underlying array. The underlying array is an implementation detail.

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 13/16

Traversing a PartiallntArray

To allow clients of PartialIntArray to traverse its elements, we
need one more method in our API - size:

public class PartiallIntArray {
VA
public int size() {
return this.size;
}
}

Now we can add elements to a PartialIntArray and traverseitin a
manner similar to regular arrays:

PartialIntArray pia = new PartiallIntArray();

pia.add(1l);

// add more ...

for (int i = 0; 1 < pia.size(); ++i) {
System.out.println(pia.get (1)) ;

}

Why did we define a size () a method rather than making the size

instance variable public?
Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 14/16

Encapsulation and Information Hiding

Our PartialIntArray class demonstrates two important concepts
in software engineering: encapsulation and information hiding.

m The elements instance variable was private and never exposed
in its entirety to clients.

m All access to elements was provided through instance methods,
S0 we can ensure data consistency by enforcing invariants,
validating input, etc.

m We could have called our class RandomAccessIntList,
because the fact that an array was used is an implementation

detail. Client code need not be aware of implementation details (to
an extent ...).

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 15/16

PartialIntArray and java.util.ArrayList

Our PartialIntArray example was inspired by Java’s standard
ArrayList class. Try these exercises at home:

m Consider what happens if a user of PartialIntArray supplies
an out of bounds index to get, i.e., < 0 or > size. Is this
desirable? If not, how would you improve it?

B Add a remove (int index) method that removes the element at
index.

m Make PartialIntArray automatically resize, that is, expand its
capacity if you add a sizeth element. How would you do this?
m Look at the source for java.util.ArrayList.

As in any craft, study the work of masters to improve your own skillz.

Chris Simpkins (Georgia Tech) CS 1331 Arrays, Part 2 of 2 16/16

