
Introduction to Object-Oriented Programming
Basic IO

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Basic IO 1 / 12

Screen Output

The Java standard library provides three primary methods in the
System.out object for sending text output to the screen.

System.out.print

System.out.println

System.out.printf (which just calls System.out.format)

CS 1331 (Georgia Tech) Basic IO 2 / 12

System.out.print

System.out.print takes a String parameter and sends the string
to the screen. The statements
System.out.print("Me");
System.out.print("ow!");

will produce the output
Meow!

CS 1331 (Georgia Tech) Basic IO 3 / 12

System.out.println

System.out.println does the same as System.out.print but
adds a newline character. The statements
System.out.println("Johnny");
System.out.println("Chimpo");

will produce the output
Johnny
Chimpo

CS 1331 (Georgia Tech) Basic IO 4 / 12

System.out.printf

System.out.printf takes a format string and any number of
additional arguments, and prints the result of inserting the additional
arguments into the format string according to the format specifiers in
the format string

The format string can contain other text in addition to format
specifiers
Each format specifier begins with % and ends with a conversion
character
You can think of each format specifier as defining a field into which
a value is inserted
Like print, printf does not print a newline character at the
end. End your format string with
n if you want to end your output with a newline

printf is a convenience method for format

CS 1331 (Georgia Tech) Basic IO 5 / 12

System.out.printf Examples

For full details, see http://docs.oracle.com/javase/7/docs/
api/java/util/Formatter.html#syntax. Here are a few
examples

“Decimals” (integers) - d, Strings - s
System.out.printf("%d %s.\n", 7, "Samurai");

prints
7 Samurai.

Floating point numbers - f
System.out.printf("I like %3.2f.%n", Math.PI);

prints
I like 3.14.

Play around with ConsoleOutput.java to get a feel for printf.
CS 1331 (Georgia Tech) Basic IO 6 / 12

http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax
http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax
http://www.cs1331.org/code/basics/ConsoleOutput.java

Number Formatting

printf is useful for general formatting, but if you need to print
currency amounts and you want to “internationalize” your code, use a
CurrencyFormatter NumberFormat.
NumberFormat us = NumberFormat.getCurrencyInstance();
System.out.println(us.format(3.14));

NumberFormat de = NumberFormat.getCurrencyInstance(Locale.GERMANY);
System.out.println(de.format(3.14));

prints

$3.14
3,14 e

CS 1331 (Georgia Tech) Basic IO 7 / 12

Packages and Imports
All Java classes are organized in packages
We’ve been using the default package (by not specifying a
package)
To use a class from a different package, you must either fully
qualify it every time you use it, or import it

NumberFormat is in the java.text package. The top of the
NumberFormat class contains the line:
package java.text;

And Locale is in the java.util package. So for our example from
the previous slide to work we must include the following import
statements at the top of our source file:
import java.text.NumberFormat;
import java.util.Locale;

See CurrencyFormatting.java
CS 1331 (Georgia Tech) Basic IO 8 / 12

http://www.cs1331.org/code/basics/CurrencyFormatting.java

Console Input

You can read input from the console using the Scanner class
First import it from the java.util package
import java.util.Scanner;

Then you can use a Scanner object to read, for example, three
integers like this:
Scanner keyboard = new Scanner(System.in);
System.out.println("Enter your 3 test scores, separated by

spaces.");
exam1 = keyboard.nextInt();
exam2 = keyboard.nextInt();
exam3 = keyboard.nextInt();
examAvg = (exam1 + exam2 + exam3) / 3.0; // Why 3.0 instead of 3?
System.out.printf("Your exam average is %.1f%n", examAvg);

CS 1331 (Georgia Tech) Basic IO 9 / 12

Basic File Input using Scanner

You can read from a file the same way you read from a keyboard by
simply initializing with a File instead of System.in
Scanner gradeFile = new Scanner(new File("grades.txt"));

Scanner’s hasNext method tells you whether there’s more input to
consume. A common idiom for reading all the lines of a text file is:
Scanner fileScanner = new Scanner(new File("ScannerFun.java"));
while (fileScanner.hasNext()) {

String line = fileScanner.nextLine();
// do something with line

}

See CourseAverage.java for a more detailed example.

CS 1331 (Georgia Tech) Basic IO 10 / 12

http://www.cs1331.org/code/basics/CourseAverage.java

Basic File Output using PrintStream

Look up System.out in the Java API documentaion. What’s the type
of System’s out static variable?

System.out is initialized to use the program’s stdout file
desicriptor, which is the console if output hasn’t been redirected.
We can create PrintStreams with other files or
OutputStreams and write to them jsut like we’ve been eriting to
the console.

PrintStream outFile = new PrintStream(new File("somefile.txt"));
outFile.println(...);

Stop and think about this for a moment. We can write to a text file the
same way we write to a text console. What general principle in
computing/programming is this an example of?

CS 1331 (Georgia Tech) Basic IO 11 / 12

Programming Exercise

Write a program that
reads all the lines of a file whose name is given at the command
line,
creates a new file whose file name is the original file name with
“-uppercase” appended to the base name1, and
writes all the lines of the original file to the new file but in
uppercase letters.

To do this, you’ll need to look up String’s lastIndexOf,
substring, toUpperCase methods in the Java API.

Note: File’s constructor throws a FileNotFoundException.
For now, deal with this by appending throws Exception to the
signature of any method that instantiates a File or calls a
method that does so. For example, in your solution to this exercise
the main method’s signature should be:
public static void main(String[] args) throws Exception

1The base name of a file is the part that appears before the extension, e.g., the
basename of MyClass.java is MyClass.

CS 1331 (Georgia Tech) Basic IO 12 / 12

