Introduction to Object-Oriented Programming
Binary Search Trees

Christopher Simpkins

chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) 1/25

Trees are everywhere.

'Source:http://commons.wikimedia.org/wiki/File:
Winnersh_Meadows_Trees. jpg

CS 1331 (Georgia Tecl 2/25

 http://commons.wikimedia.org/wiki/File:Winnersh_Meadows_Trees.jpg
 http://commons.wikimedia.org/wiki/File:Winnersh_Meadows_Trees.jpg

They’re in our web browsers.

€S 1331 Introduction to Object Oriented Programming

CS 1331 Introduction to Object ... * | [Z] €5 1331 (237 unread) x|+ |

| & GT | GT Login x|

» | @ www.cc.gatech.edu/~simpkins /teaching /gatech/cs1331/syllabus/cs1331-fall2013.htm| e | (B~ Google Q) (B (¥ ([~

[E] Most visited ~ @ Getting Started] Work ~ [] Personal = [Scala v [Diving v

CS 1331 Introduction to ”E_]ect Oriented Programming

Fall 2013 Syllabus for Sections A1-A4, B1-B4, and GR

Last updated on 2013-12-03 at 20:10.

This open-access part of the syllabus contains schedule and general information for my sections. All grade-related information are on T-Square.
There is also a general syllabus here: ¢s1331-syllabus.pdf .

Please read and be sure you fully understand the cs1331-course-policies.html.

Please read and be sure you fully understand the cs1331-course-policies.html.

I'm serious! Please read and be sure you fully understand the cs1331-course-policies html !!!

> Console 3 Inspector @ Debugger [style Editor @ Profiler = Network

h1 Computed

<1--2xnl version='1.0" encoding="utf-8' ?2-—> element { inline
<IDOCTYPE html PUBLIC *-//W3C//DID XHTML 1.0 Tramsitional//EN' “http:/fwws.w3.org/TR/xhtmll/DTo/xhtmll- ¥
transiticnal.dtd">
4<html lang="en' xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
) <head> .. </head>
i <body>
} <div id="cs-1331-introduction-to-cbject-oriented-programming” class="document"> .. </div>
</body>
<htnl>

3/25

They'’re in our file systems.

Name

v [jekyll
4 _config.ymi
» [] _layouts
> [:l css
» [img
& index.html
» [js
v [main

» [l java
» [] resources

¥ [l scala
v [org

v [afabl
" AfablAgent.scala

| Agent.scala

| AgentAdapter.scala

1_AnenftServer scala
42 items, 323.04 GB available

CS 1331 (Georgia Te

4/25

They’re even in pop culture.

2Source:
http://userserve—ak.last.fm/serve/500/44019065/Neon+Trees.png
CS 1331 (Georgia Tech) 5/25

http://userserve-ak.last.fm/serve/500/44019065/Neon+Trees.png

But they’re not in Kansas.

3Source:
http://en.wikipedia.org/wiki/File:WabaunseeoCounty. Views JPG:
CS 1331 (Georgia Tech) 6/25

http://en.wikipedia.org/wiki/File:Wabaunsee_County_View.JPG

Binary Tree Nodes

The nodes of a binary tree have
m adata item,
m alink to a left node, and
m alink to a right node.

private class Node<E> {
E item;
Node<E> left;
Node<E> right;

Node (E item, Node<E> left, Node<E> right) {
this.item = item;
this.left = left;
this.right = right;

}

Just as in the other linked data structures we’ve studied, binary trees
are recursive.
CS 1331 (Georgia Tech)

7/25

Binary Tree Structure

m Every tree has a distinguished root node with no parent.
m All other nodes have exactly one parent.

m Nodes which have no children are called leaf nodes.

m Nodes which have children are called interior nodes.

m Every node has 0, 1, or 2 children.

m Every node can be reached by a unique path from the root node.

itermn

left

/ rigm\ T~

item item

left left

right right

CS 1331 (Georgia Tech) 8/25

Binary Search Trees

A binary search tree (BST) encodes the binary search algorithm into
its structure. The BST property: for any node,

m all the elements in the node’s left subtree are less than the node’s
data item, and

m all the elements in the node’s right subtree are equal to or greater
than the node’s data item.

A BST is distinguished by this property, but it's ADT is just like the
others we’ve seen: add elements, find element’s in the tree, and iterate
over the elements in a tree.

CS 1331 (Georgia Tech) 9/25

Maintaining The BST Property

To add a new value to binary tree and maintain the BST property, we
m insert new nodes for data items into the left subtree of a node if
the new item is less than the node’s item, or
m the right subtree otherwise.
Every new item creates a leaf node, which can later become an interior
node after additional items have been added. Here’s the structure of a
BST after adding the sequence of numbers 3, 4, 1, 5, 2:

3

left

/ = T~

1 4
left left

rig Im\‘_‘ thl_‘_‘

left left

right right

CS 1331 (Georgia Tech) 10/25

Adding Elements to a BST

public class BinarySearchTree<E extends Comparable<? super E>>
implements Iterable<E> ({

protected class Node<E> { ... }
protected Node<E> root;

public void add(E item) {
root = insert (item, root);
}
protected Node<E> insert (E newItem, Node<E> node) {
if (node == null) {
return new Node<E> (newlItem, null, null);
} else if (newlItem.compareTo (node.item) < 0) {

node.left = insert (newlItem, node.left);
return node;

} else {
node.right = insert (newlItem, node.right);

return node;

CS 1331 (Georgia Tech)

11/25

Exercise: Insertion Locations

Given the following tree that conforms to the binary search tree
property:
6

3 9
A~
1 5 7 11

PN
10 15

Where would 2, 4, 8, and 16 be inserted in the tree?

CS 1331 (Georgia Tech) 12/25

Traversing a Binary Tree

There are three primary ways to traverse a binary tree:
Pre-order:

m Process node’s item.

m Process left subtree.

m Process right subtree.
In-order:

m Process left subtree.

m Process node’s item.

m Process right subtree.
Post-order:

m Process left subtree.

m Process right subtree.

m Process node’s item.

CS 1331 (Georgia Tech) 13/25

Simple In-Order Traversal

Traversal code follows the recursive structure of the tree:

public void printInOrder () {
printInOrder (root) ;

}

private void printInOrder (Node<E> node) {

if (node != null) {
printInOrder (node.left);
System.out.print (node.item + " ");

printInOrder (node.right) ;

}

The code above prints the elements in ascending order. Let’'s add a
printDescending () method to BinarySearchTree.java.

CS 1331 (Georgia Tech)

14/25

http://www.cs1331.org/code/data-structures/BinarySearchTree.java

Exercise: Traversal Orders

Given the following tree:

If we proecssed each element by printing it, in what order would the
elements be printed

m For a pre-order traversal:
m For an in-order traversal:
m For a post-order traversal:

CS 1331 (Georgia Tech) 15/25

The Path to an ltem

To find a path to an item in a BST:
m set the path to the empy list
m set the root node as the currentNode

m until we find the node containing the item or exhaust the BST:

m if currentNode contains the item, add it to the path and return it

m else if query item is less than the item in currentNode, add
currentNode to path and set the left child as the new currentNode

m else add add currentNode to path and set the right child as the new
currentNode

m if the item wasn’t found, set the path to the empty list

CS 1331 (Georgia Tech) 16/25

Path Examples

Adding the elements [3,
following structure:

4, 1, 5, 2] toaBST would result in the

3
/\
1 4
nil 2 nil 5
PN
nil nil

and the paths to each element in the tree would be:
Path to 1: [3, 1]
m Pathto 2: [3, 1, 2]
Path to 3: [3]
Path to 4: [3, 4]
Path to 5: [3, 4, 5]
See public List<E> path(E queryItem) in
BinarySearchTree.java for the code.
CS 1331 (Georgia Tech) 17/25

http://www.cs1331.org/code/data-structures/BinarySearchTree.java

Exercise: Paths

Given the following tree:

2 6 10 14

/\/\/\/\
1357 9 11 13 15

m What’s the path to 1?
m Whats the path to 117

CS 1331 (Georgia Tech) 18/25

Recursively Building a Result: inOrderList ()

We can use the recursive accumulator idiom to collect the elements of
the tree in an in-order traversal:

public List<E> toList () {
return inOrderList (root, new ArrayList<E>());

}

private List<E> inOrderList (Node<E> node, List<E> accum) {

if (null == node) {
return accum;
} else {

inOrderList (node.left, accum);

accum.add (node.item) ;

inOrderList (node.right, accum);
}

return accum;

}

Again, the code follows the recursive structure of the tree.

CS 1331 (Georgia Tech) 19/25

Imperative traveral: inOrderImperative ()

Contrast the previous code for getting an in-order list of BST elements
with an imperative version:

public List<E> inOrderImperative() {
Node<E> curNode = root;
Stack<Node<E>> fringe = new LinkedStack<>();
List<E> accum = new ArrayList<E>();
while ((curNode != null) || !fringe.isEmpty()) {
while (curNode != null) {
fringe.push (curNode) ;
curNode = curNode.left;
}
curNode = fringe.pop();
accum.add (curNode.item) ;
curNode = curNode.right;
}

return accum;

}
We need extra bookkeeping variables to keep track of where we are in
the tree so we can back-track. See BinarySearchTree.java for
comments explaining the algorithm.

CS 1331 (Georgia Tech) 20/25

http://www.cs1331.org/code/data-structures/BinarySearchTree.java

lterators

Iterators can free clients from having to implement traversal
algorithms. We can even plug our data structures into Java’s for-each
loop by implementing java.lang.Iterable:

public interface Iterable<T> {
java.util.Iterator<T> iterator();
}

As areminder, java.util.Iterator:

public interface Iterator<E> {
boolean hasNext () ;

E next();

void remove () ;

CS 1331 (Georgia Tech) 21/25

Stateful In-Order Tree Traversal

In the traversal examples we saw earlier the traversal order was
effected by the method call stack. A stateful iterator is much more
challenging because:

m The iterator must remember where it is in the tree

m The iterator must be able to back-track to parent nodes after
processing child branches

The essential implementation idea is to use a stack to store nodes for
back-tracking. Traditionally (at least in Al), this “to-do list” stack is
called the fringe.

Let’s look at BinarySearchTree.java again to see how we implement a
stateful in-order iterator.

CS 1331 (Georgia Tech) 22/25

http://www.cs1331.org/code/data-structures/BinarySearchTree.java

Analysis of BSTs

What is the Big-O of finding an element in a BST?

8
4 12
2/\6 /\

10 14
/\/\/\ /\
T3 57 g 11 13 15

PN
nil 16

CS 1331 (Georgia Tech) 23/25

Analysis of BSTs

What is the Big-O of finding an element in a BST?

8
4 12
2/\6 /\

10 14
PN P P /\
T3 57 g 11 13 15
P
nil 16

m Proportional to height of tree

CS 1331 (Georgia Tech) 23/25

Analysis of BSTs

What is the Big-O of finding an element in a BST?

8
4 12
2/\6 /\

10 14
/\/\/\ /\
T3 57 g 11 13 15

PN
nil 16

m Proportional to height of tree
m Height of tree is proportional to log n

CS 1331 (Georgia Tech) 23/25

Analysis of BSTs

What is the Big-O of finding an element in a BST?

8
4 12
2/\6 /\

10 14
/\/\/\ /\
T3 57 g 11 13 15

PN
nil 16

m Proportional to height of tree
m Height of tree is proportional to log n
m 16-element tree has height 4

CS 1331 (Georgia Tech) 23/25

Height of BST Proportional to log n

2 6
S /\
1 3 5 7

PR
nil 8

8-element tree has height 3

CS 1331 (Georgia Tech) 24/25

End of course cliff hanger ...

What if we add elements to a BST in order?

CS 1331 (Georgia Tech) 25/25

End of course cliff hanger ...

What if we add elements to a BST in order?

m We end up with a linked list!

CS 1331 (Georgia Tech) 25/25

End of course cliff hanger ...

What if we add elements to a BST in order?

m We end up with a linked list!

m In your algorithms and data structures course you'll learn how to
maintain a balanced binary search tree.

CS 1331 (Georgia Tech) 25/25

