
Introduction to Object-Oriented Programming
Binary Search Trees

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Binary Search Trees 1 / 25

Trees are everywhere.

1

1Source:http://commons.wikimedia.org/wiki/File:
Winnersh_Meadows_Trees.jpg

CS 1331 (Georgia Tech) Binary Search Trees 2 / 25

 http://commons.wikimedia.org/wiki/File:Winnersh_Meadows_Trees.jpg
 http://commons.wikimedia.org/wiki/File:Winnersh_Meadows_Trees.jpg

They’re in our web browsers.

CS 1331 (Georgia Tech) Binary Search Trees 3 / 25

They’re in our file systems.

CS 1331 (Georgia Tech) Binary Search Trees 4 / 25

They’re even in pop culture.

2

2Source:
http://userserve-ak.last.fm/serve/500/44019065/Neon+Trees.png

CS 1331 (Georgia Tech) Binary Search Trees 5 / 25

http://userserve-ak.last.fm/serve/500/44019065/Neon+Trees.png

But they’re not in Kansas.

3

3Source:
http://en.wikipedia.org/wiki/File:Wabaunsee_County_View.JPG

CS 1331 (Georgia Tech) Binary Search Trees 6 / 25

http://en.wikipedia.org/wiki/File:Wabaunsee_County_View.JPG

Binary Tree Nodes

The nodes of a binary tree have
a data item,
a link to a left node, and
a link to a right node.

private class Node<E> {
E item;
Node<E> left;
Node<E> right;

Node(E item, Node<E> left, Node<E> right) {
this.item = item;
this.left = left;
this.right = right;

}
}

Just as in the other linked data structures we’ve studied, binary trees
are recursive.

CS 1331 (Georgia Tech) Binary Search Trees 7 / 25

Binary Tree Structure

Every tree has a distinguished root node with no parent.
All other nodes have exactly one parent.

Nodes which have no children are called leaf nodes.
Nodes which have children are called interior nodes.
Every node has 0, 1, or 2 children.
Every node can be reached by a unique path from the root node.

CS 1331 (Georgia Tech) Binary Search Trees 8 / 25

Binary Search Trees

A binary search tree (BST) encodes the binary search algorithm into
its structure. The BST property: for any node,

all the elements in the node’s left subtree are less than the node’s
data item, and
all the elements in the node’s right subtree are equal to or greater
than the node’s data item.

A BST is distinguished by this property, but it’s ADT is just like the
others we’ve seen: add elements, find element’s in the tree, and iterate
over the elements in a tree.

CS 1331 (Georgia Tech) Binary Search Trees 9 / 25

Maintaining The BST Property

To add a new value to binary tree and maintain the BST property, we
insert new nodes for data items into the left subtree of a node if
the new item is less than the node’s item, or
the right subtree otherwise.

Every new item creates a leaf node, which can later become an interior
node after additional items have been added. Here’s the structure of a
BST after adding the sequence of numbers 3, 4, 1, 5, 2:

CS 1331 (Georgia Tech) Binary Search Trees 10 / 25

Adding Elements to a BST

public class BinarySearchTree<E extends Comparable<? super E>>
implements Iterable<E> {

protected class Node<E> { ... }

protected Node<E> root;

public void add(E item) {
root = insert(item, root);

}
protected Node<E> insert(E newItem, Node<E> node) {

if (node == null) {
return new Node<E>(newItem, null, null);

} else if (newItem.compareTo(node.item) < 0) {
node.left = insert(newItem, node.left);
return node;

} else {
node.right = insert(newItem, node.right);
return node;

}
}

CS 1331 (Georgia Tech) Binary Search Trees 11 / 25

Exercise: Insertion Locations

Given the following tree that conforms to the binary search tree
property:

6

3

1 5

9

7 11

10 15

Where would 2, 4, 8, and 16 be inserted in the tree?

CS 1331 (Georgia Tech) Binary Search Trees 12 / 25

Traversing a Binary Tree

There are three primary ways to traverse a binary tree:
Pre-order:

Process node’s item.
Process left subtree.
Process right subtree.

In-order:
Process left subtree.
Process node’s item.
Process right subtree.

Post-order:
Process left subtree.
Process right subtree.
Process node’s item.

CS 1331 (Georgia Tech) Binary Search Trees 13 / 25

Simple In-Order Traversal

Traversal code follows the recursive structure of the tree:
public void printInOrder() {

printInOrder(root);
}

private void printInOrder(Node<E> node) {
if (node != null) {

printInOrder(node.left);
System.out.print(node.item + " ");
printInOrder(node.right);

}
}

The code above prints the elements in ascending order. Let’s add a
printDescending() method to BinarySearchTree.java.

CS 1331 (Georgia Tech) Binary Search Trees 14 / 25

http://www.cs1331.org/code/data-structures/BinarySearchTree.java

Exercise: Traversal Orders

Given the following tree:
+

*

1 3

-

7 5

If we proecssed each element by printing it, in what order would the
elements be printed

For a pre-order traversal:
For an in-order traversal:
For a post-order traversal:

CS 1331 (Georgia Tech) Binary Search Trees 15 / 25

The Path to an Item

To find a path to an item in a BST:
set the path to the empy list
set the root node as the currentNode
until we find the node containing the item or exhaust the BST:

if currentNode contains the item, add it to the path and return it
else if query item is less than the item in currentNode, add
currentNode to path and set the left child as the new currentNode
else add add currentNode to path and set the right child as the new
currentNode

if the item wasn’t found, set the path to the empty list

CS 1331 (Georgia Tech) Binary Search Trees 16 / 25

Path Examples
Adding the elements [3, 4, 1, 5, 2] to a BST would result in the
following structure:

3

1

nil 2

4

nil 5

nil nil
and the paths to each element in the tree would be:

Path to 1: [3, 1]
Path to 2: [3, 1, 2]
Path to 3: [3]
Path to 4: [3, 4]
Path to 5: [3, 4, 5]

See public List<E> path(E queryItem) in
BinarySearchTree.java for the code.

CS 1331 (Georgia Tech) Binary Search Trees 17 / 25

http://www.cs1331.org/code/data-structures/BinarySearchTree.java

Exercise: Paths

Given the following tree:
8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

What’s the path to 1?
Whats the path to 11?

CS 1331 (Georgia Tech) Binary Search Trees 18 / 25

Recursively Building a Result: inOrderList()

We can use the recursive accumulator idiom to collect the elements of
the tree in an in-order traversal:

public List<E> toList() {
return inOrderList(root, new ArrayList<E>());

}

private List<E> inOrderList(Node<E> node, List<E> accum) {
if (null == node) {

return accum;
} else {

inOrderList(node.left, accum);
accum.add(node.item);
inOrderList(node.right, accum);

}
return accum;

}

Again, the code follows the recursive structure of the tree.

CS 1331 (Georgia Tech) Binary Search Trees 19 / 25

Imperative traveral: inOrderImperative()
Contrast the previous code for getting an in-order list of BST elements
with an imperative version:

public List<E> inOrderImperative() {
Node<E> curNode = root;
Stack<Node<E>> fringe = new LinkedStack<>();
List<E> accum = new ArrayList<E>();
while ((curNode != null) || !fringe.isEmpty()) {

while (curNode != null) {
fringe.push(curNode);
curNode = curNode.left;

}
curNode = fringe.pop();
accum.add(curNode.item);
curNode = curNode.right;

}
return accum;

}

We need extra bookkeeping variables to keep track of where we are in
the tree so we can back-track. See BinarySearchTree.java for
comments explaining the algorithm.

CS 1331 (Georgia Tech) Binary Search Trees 20 / 25

http://www.cs1331.org/code/data-structures/BinarySearchTree.java

Iterators

Iterators can free clients from having to implement traversal
algorithms. We can even plug our data structures into Java’s for-each
loop by implementing java.lang.Iterable:
public interface Iterable<T> {

java.util.Iterator<T> iterator();
}

As a reminder, java.util.Iterator:
public interface Iterator<E> {

boolean hasNext();

E next();

void remove();
}

CS 1331 (Georgia Tech) Binary Search Trees 21 / 25

Stateful In-Order Tree Traversal

In the traversal examples we saw earlier the traversal order was
effected by the method call stack. A stateful iterator is much more
challenging because:

The iterator must remember where it is in the tree
The iterator must be able to back-track to parent nodes after
processing child branches

The essential implementation idea is to use a stack to store nodes for
back-tracking. Traditionally (at least in AI), this “to-do list” stack is
called the fringe.
Let’s look at BinarySearchTree.java again to see how we implement a
stateful in-order iterator.

CS 1331 (Georgia Tech) Binary Search Trees 22 / 25

http://www.cs1331.org/code/data-structures/BinarySearchTree.java

Analysis of BSTs

What is the Big-O of finding an element in a BST?
8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

nil 16

Proportional to height of tree
Height of tree is proportional to log n
16-element tree has height 4

CS 1331 (Georgia Tech) Binary Search Trees 23 / 25

Analysis of BSTs

What is the Big-O of finding an element in a BST?
8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

nil 16

Proportional to height of tree
Height of tree is proportional to log n
16-element tree has height 4

CS 1331 (Georgia Tech) Binary Search Trees 23 / 25

Analysis of BSTs

What is the Big-O of finding an element in a BST?
8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

nil 16

Proportional to height of tree
Height of tree is proportional to log n
16-element tree has height 4

CS 1331 (Georgia Tech) Binary Search Trees 23 / 25

Analysis of BSTs

What is the Big-O of finding an element in a BST?
8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

nil 16

Proportional to height of tree
Height of tree is proportional to log n
16-element tree has height 4

CS 1331 (Georgia Tech) Binary Search Trees 23 / 25

Height of BST Proportional to log n

4

2

1 3

6

5 7

nil 8

8-element tree has height 3

CS 1331 (Georgia Tech) Binary Search Trees 24 / 25

End of course cliff hanger ...

What if we add elements to a BST in order?
1

nil 2

nil 3

nil 4

nil 5

nil 6

We end up with a linked list!
In your algorithms and data structures course you’ll learn how to
maintain a balanced binary search tree.

CS 1331 (Georgia Tech) Binary Search Trees 25 / 25

End of course cliff hanger ...

What if we add elements to a BST in order?
1

nil 2

nil 3

nil 4

nil 5

nil 6

We end up with a linked list!
In your algorithms and data structures course you’ll learn how to
maintain a balanced binary search tree.

CS 1331 (Georgia Tech) Binary Search Trees 25 / 25

End of course cliff hanger ...

What if we add elements to a BST in order?
1

nil 2

nil 3

nil 4

nil 5

nil 6

We end up with a linked list!
In your algorithms and data structures course you’ll learn how to
maintain a balanced binary search tree.

CS 1331 (Georgia Tech) Binary Search Trees 25 / 25

