
Introduction to Object-Oriented Programming
Java Collections

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Java Collections 1 / 12



The Collections Framework

A collection is an object that represents a group of objects.
The collections framework allows different kinds of collections to
be dealt with in an implementation-independent manner.

CS 1331 (Georgia Tech) Java Collections 2 / 12



Collection Framework Components

The Java collections framework consists of:
Collection interfaces representing different types of collections
(sets, lists, etc)
General purpose implementations (like ArrayList or HashSet)
Absract implementations to support custom implementations
Algorithms defined in static utility methods that operate on
collections (like Collections.sort(List<T> list))
Infrastructure interfaces that support collections (like Iterator)

Today we’ll learn a few basic concepts, then tour the collections library.

CS 1331 (Georgia Tech) Java Collections 3 / 12



The Collection Interface

Collection is the root interface of the collections framework,
declaring basic operations such as:

add(E e) to add elements to the collection
contains(Object key) to determine whether the collection
contains key
isEmpty() to test the collection for emptiness
iterator() to get an interator over the elements of the
collection
remove(Object o) to remove a single instance of o from the
collection, if present
size() to find out the number of elements in the collection

None of the collection implementations in the Java library implement
Collection directly. Instead they implement List or Set.

CS 1331 (Georgia Tech) Java Collections 4 / 12



Lists and ArrayList

The List interface extends the Collection interface to represent
ordered collections, or sequences. List adds

methods for positional (indexed) access to elements (get(int
index), indexOf(Object o), remove(int index),
set(int index, E element)),
a special iterator, ListIterator, that allows element insertion
and replacement, and bidirectional access in addition to the
normal operations that the Iterator interface provides; and
methods to obtain a ListIterator

a subList(int fromIndex, int toIndex) that returns a
view of a portion of the list.

ArralyList and LinkedList are the two basic List
implementations provided in the Java standard library.1

1Vector also implements List and can be thought of as a synchronized version
of ArrayList. You don’t need Vector if you’re not writing multithreaded code. Using
Vector in single-threaded code will decrease performance.

CS 1331 (Georgia Tech) Java Collections 5 / 12



ArrayList Basics

Create an ArrayList with operator new:
ArrayList tasks = new ArrayList();

Add items with add():
tasks.add("Eat");
tasks.add("Sleep");
tasks.add("Code");

Traverse with for-each loop:
for (Object task: tasks) {

System.out.println(task);
}

Note that the for-each loop implicitly uses an iterator.

CS 1331 (Georgia Tech) Java Collections 6 / 12



Generics

Did you notice the warning when we compile
ArrayListBasics.java?
$ javac ArrayListBasics.java
Note: ArrayListBasics.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Java issues this warning because ArrayList (and the other
collecttion classes in the Java library) is a parameterized type and we
used ArrayList without a type parameter. The full class name is
ArrayList<E>.

E is a type parameter, which can be any class name (not a
primitive type).
ArrayList<E> is a parameterized type
E tells the compiler which types are stored in the collection.

So the compiler is warning us that we’re not using the type parameter
and thus missing out on static type-checking.

CS 1331 (Georgia Tech) Java Collections 7 / 12



Using Generics

Supply a type argument in the angle brackets. Read
ArrayList<String> as “ArrayList of String”
ArrayList<String> strings = new ArrayList<String>();
strings.add("Helluva"); strings.add("Engineer!");

If we try to add an object that isn’t a String, we get a compile error:
Integer BULL_DOG = Integer.MIN_VALUE;
strings.add(BULL_DOG); // Won’t compile

With a typed collection, we get autoboxing on insertion and retrieval:
ArrayList<Integer> ints = new ArrayList<>();
ints.add(42);
int num = ints.get(0);

Notice that we didn’t need to supply the type parameter in the creation
expression above. Java inferred the type parameter from the
declaration. (Note: this only works in Java 7 and above.)
See ArrayListGenericsDemo.java for more.

CS 1331 (Georgia Tech) Java Collections 8 / 12

http://www.cs1331.org/code/collections/ArrayListGenericsDemo.java


Primitives in Collections

ArrayLists can only hold reference types. So you must use wrapper
classes for primitives:
ArrayList ints = new ArrayList();
ints.add(new Integer(42));

Java auto-boxes primitives when adding to a collection:
ints.add(99);

But auto-unboxing can’t be done when retrieving from an untyped
collection:
int num = ints.get(0); // won’t compile

The old way to handle this with untyped collections is to cast it:
int num = (Integer) ints.get(0); // auto-unboxing on assignment to int

See ArrayListPrimitivesDemo.java for more.

CS 1331 (Georgia Tech) Java Collections 9 / 12

http://www.cs1331.org/code/collections/ArrayListPrimitivesDemo.java


Sets

A Set is a collection with no duplicate elements (no two elements e1
and e2 for which e1.equals(e2)) and in no particular order. Given:
List<String> nameList = Arrays.asList("Alan", "Ada", "Alan");
Set<String> nameSet = new HashSet<>(nameList);
System.out.println("nameSet: " + nameSet);

will print:
nameSet: [Alan, Ada]

CS 1331 (Georgia Tech) Java Collections 10 / 12



Maps
A Map<K, V> is an object that maps keys of type K to values of type
V. The code:

Map<String, String> capitals = new HashMap<>();
capitals.put("Georgia", "Atlanta");
capitals.put("Alabama", "Montgomery");
capitals.put("Florida", "Tallahassee");
for (String state: capitals.keySet()) {

System.out.println("Capital of " + state + " is "
+ capitals.get(state));

}

prints:
Capital of Georgia is Atlanta
Capital of Florida is Tallahassee
Capital of Alabama is Montgomery

Note that the order of the keys differs from the order in which we added
them. The keys of a map are a Set, so there can be no duplicates and
order is not guaranteed. If you put a new value with the same key as
an entry already in the map, that entry is overwritten with the new one.

CS 1331 (Georgia Tech) Java Collections 11 / 12



Programming Exercise

Write a class called WordCount.
The constructor should take a String file name.
WordCount should have an instance variable wordCounts which
is a Map from String to int, where each String key is a word
that occurs in the file supplied to the constructor, and the
corresponding int is the number of times the word appears in the
file.

Extra: normalize the word counts to [0,1] so that the word counts
represent the probability that a randomly chosen word from the file is a
given word. For normalized word counts, what will be the type of the
value in the map?

CS 1331 (Georgia Tech) Java Collections 12 / 12


