
Introduction to Object-Oriented Programming
Conditional Execution

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Conditional Execution 1 / 14

Structured Programming

In reasoning about the flow of control to and from a statement,
consider control flow issues:

Multiple vs. single entry ("How did we get here?")
Multiple vs. single exit ("Where do we go from here?")
goto considered harmful (goto makes it hard to answer
questions above)

Structured programming: block structure, single entry, single exit, no
goto. All algorithms expressed by:

Sequence - one statement after another
Selection - conditional execution (not conditional jumping)
Iteration - loops

Today we’ll learn Java’s support for conditional execution

CS 1331 (Georgia Tech) Conditional Execution 2 / 14

Boolean Values

There are 10 kinds of people:
Those who know binary,
and those who don’t.

CS 1331 (Georgia Tech) Conditional Execution 3 / 14

Boolean Values

There are 10 kinds of people:
Those who know binary,
and those who don’t.

CS 1331 (Georgia Tech) Conditional Execution 3 / 14

Boolean Values

There are 10 kinds of people:
Those who know binary,
and those who don’t.

CS 1331 (Georgia Tech) Conditional Execution 3 / 14

Boolean Values

In Java, boolean values have the boolean type. Four kinds of boolean
expressions:

boolean literals: true and false

boolean variables
expressions formed by combining non-boolean expressions with
comparison operators
expressions formed by combining boolean expressions with
logical operators

CS 1331 (Georgia Tech) Conditional Execution 4 / 14

Boolean Expressions Formed From Comparisons

Simple boolean expressions formed with comparison operators:
Equal to: ==, like = in math

Remember, = is assignment operator, == is comparison operator!

Not equal to: !=, like 6= in math
Greater than: >, like > in math
Greater than or equal to: >=, like ≥ in math
...

Examples:
1 == 1 // true
1 != 1 // false
1 >= 1 // true
1 > 1 // false

CS 1331 (Georgia Tech) Conditional Execution 5 / 14

Boolean Expressions Formed From Logical Operators

Simple boolean expressions can be combined to form larger
expressions using:

And: &&, like ∧ in math
Or: ||, like ∨ in math

Examples:
(1 == 1) && (1 != 1) // false
(1 == 1) || (1 != 1) // true

Also, unary negation operator !:
!true // false
!(1 == 2) // true

CS 1331 (Georgia Tech) Conditional Execution 6 / 14

The if-else Statement

Conditional execution:
if (booleanExpression)

// a single statement executed when booleanExpression is true
else

// a single statement executed when booleanExpression is false

booleanExpression must be enclosed in parentheses
else not required

Example:
if ((num % 2) == 0)

System.out.printf("I like %d.%n", num);
else

System.out.printf("I’m ambivalent about %d.%n", num);

CS 1331 (Georgia Tech) Conditional Execution 7 / 14

Ternary If-Else Expression

The ordinary if-else control structure is a statement, leading to
conditional assignment code like this:
String dinner = null;
if (temp > 60) {

dinner = "grilled";
} else {

dinner = "baked";
}

The ternary operator combines the above into one expression (recall
that expressions have values):
String dinner = (temp > 60) ? "grilled" : "baked"

CS 1331 (Georgia Tech) Conditional Execution 8 / 14

Blocks

Java is block-structured. You can enclose any number of statements in
curly braces ({ ... }) to create a block. Blocks are like single statements
(not expressions - they don’t have values).
if ((num % 2) == 0) {

System.out.printf("%d is even.%n", num);
System.out.println("I like even numbers.");

} else {
System.out.printf("%d is odd.%n", num);
System.out.println("I’m ambivalent about odd numbers.");

}

The Java conventions recommend using braces always, even for single
statements. A very common error is adding statements to an if-branch
and forgetting to add braces.

CS 1331 (Georgia Tech) Conditional Execution 9 / 14

Multi-way if-else Statements

This is hard to follow:
if (color.toUpperCase().equals("RED")) {

System.out.println("Redrum!");
} else {

if (color.toLowerCase().equals("yellow")) {
System.out.println("Submarine");

} else {
System.out.println("A Lack of Color");

}
}

This multi-way if-else is equivalent, and clearer:
if (color.toUpperCase().equals("RED")) {

System.out.println("Redrum!");
} else if (color.toLowerCase().equals("yellow")) {

System.out.println("Submarine");
} else {

System.out.println("A Lack of Color");
}

CS 1331 (Georgia Tech) Conditional Execution 10 / 14

Short-Circuit Evaluation

Here’s a common idiom for testing an operand before using it:
if ((kids !=0) && ((pieces / kids) >= 2))

System.out.println("Each kid may have two pieces.");

In this example Java uses short-circuit evaluation. If
kids !=0

evaluates to false, then the second sub-expression is not evaluated,
thus avoiding a divide-by-zero error.

Note: You can force a complete evaluation by using & or |, for example
if you have side effects you want to ensure happen in the second
expression. We mention this fact for completeness but implore you not
to write such code.
See Conditionals.java for examples.

CS 1331 (Georgia Tech) Conditional Execution 11 / 14

http://www.cs1331.org/code/basics/Conditionals.java

The switch Statement

Java provides switch statement for multi-way branching.
switch (expr) {
case 1:

// executed only when case 1 holds
break;

case 2:
// executed only when case 2 holds

case 3:
// executed whenever case 2 or 3 hold
break;

default:
// executed only when other cases don’t hold

}

Execution jumps to the first matching case and continues until a
break, default, or switch statement’s closing curly brace is
reached
Type of expr can be char, int, short, byte, or String
In example above, what is type of expr?

CS 1331 (Georgia Tech) Conditional Execution 12 / 14

Avoid the switch Statement

The switch statement is error-prone.
switch considered harmful. 97% of fall-throughs unwanted1

Anachronism from “structured assembly language”, a.k.a. C (a
switch is just a jump table)

You can do without the switch statement. See

CharCountSwitch.java for a switch example,
CharCountIf.java for the same program using an if statement in
place of the switch statement, and
CharCount.java for the same program using standard library utility
methods.

1Peter van der Linden, Deep C Secrets
CS 1331 (Georgia Tech) Conditional Execution 13 / 14

http://www.cs1331.org/code/basics/CharCountSwitch.java
http://www.cs1331.org/code/basics/CharCountIf.java
http://www.cs1331.org/code/basics/CharCount.java

Closing Thoughts

Conditional execution straightforward, but watch out for
side-effects in boolean assignments.
Parenthesize your expressions to make them clear to the reader
and to Java.
Next we’ll learn loops, and we’ll have all the tools we need to
implement any algorithm.2

2Actually we already have all the tools we need to implement any algorithm in a
functional style, but we need loops for imperative algorithms.

CS 1331 (Georgia Tech) Conditional Execution 14 / 14

