
CS 1331 Introduction to Object Oriented
Programming
Data Abstraction

Christopher Simpkins
chris.simpkins@gatech.edu

Chris Simpkins (Georgia Tech) CS 1331 Data Abstraction 1 / 10



Data Abstraction
An abstraction of a concept attempts to capture the essence of the
concept – its essential properties and behaviors – by ignoring
irrelevant details.

Process abstraction - group the operations of a process in a
subprogram and expose only the essential elements of the
process to clients through the subprogram signature (e.g.,
function/method name and parameters)
Data abstraction - encapsulation of data with the operations
defined on the data
A particular data abstraction is called an abstract data type. Note
that ADT’s include process abstractions as well

In each case, an abstraction hides details — details of a process or
details of a data structure.

“Abstraction is selective ignorance.”

– Andrew Koenig (C++ Guru)

Chris Simpkins (Georgia Tech) CS 1331 Data Abstraction 2 / 10



A Complex Number ADT

ADT: Complex

Data:
real: double the real part of a complex number
imaginary: double the imaginary part of a complex number

Operations:
new - construct a new complex number
plus - add one complex number to another, yielding a new
complex number

An ADT is abstract becuase the data and operations of the ADT are
defined independently of how they are implemented. We say that an
ADT encapsulates the data and the operations on the data.

Chris Simpkins (Georgia Tech) CS 1331 Data Abstraction 3 / 10



Data Abstractions with Classes

Java provides langauge suppport for defining ADTs in the form of
classes.
A class is a blueprint for objects. A class definition contains

instance variables, a.k.a. member variables or fields – the state,
or data of an object
methods, a.k.a. member functions or messages – the operations
defined on objects of the class

We instantiate or construct an object from a class.

Chris Simpkins (Georgia Tech) CS 1331 Data Abstraction 4 / 10



Java Implementation of Complex Number ADT
Here’s a Java implementation of our complex number ADT 1:
public class Complex {

// These are the data of the ADT

private double real;

private double imaginary;

// These are the operations of the ADT

public Complex(double aReal, double anImaginary) {

real = aReal;

imaginary = anImaginary;

}

public Complex plus(Complex other) {

double resultReal = this.real + other.real;

double resultImaginary = this.imaginary + other.imaginary;

return new Complex(resultReal, resultImaginary);

}

}

1
http://introcs.cs.princeton.edu/java/33design/

Chris Simpkins (Georgia Tech) CS 1331 Data Abstraction 5 / 10

http://introcs.cs.princeton.edu/java/33design/


Reference Variables

Consider the following code:
Complex a = new Complex(1.0, 2.0);

Complex b = new Complex(3.0, 4.0);

Complex c = a.plus(b);

a, b, and c are reference variables of type Complex. Reference
variables have one of two values:

the address of an object in memory (in this case an instance of
Complex), or
null, meaning the variable references nothing.

Chris Simpkins (Georgia Tech) CS 1331 Data Abstraction 6 / 10



Invoking Constructors

The line:
Complex a = new Complex(1.0, 2.0);

invokes the Complex constructor, passing arguments 1.0 and 2.0:

public Complex(aReal= 1.0 , anImaginary= 2.0 ) {

real = 1.0 ;

imaginary = 2.0 ;

}

which instantiates a Complex object and stores its address in the
variable a:
Complex a = new Complex(1.0, 2.0);

Constructors initialize objects. After the line above, Complex object
a’s instance variables have the values 1.0 and 2.0.

Chris Simpkins (Georgia Tech) CS 1331 Data Abstraction 7 / 10



Visualizing Objects and Instantiation
The object creation expression new Complex(1.0, 2.0) applies
the Complex blueprint defined by the class definition from slide 5:

to the constructor arguments (1.0, 2.0) to create an instance of
Complex:

We can assign this object to a reference variable, e.g.,
Complex a = new Complex(1.0, 2.0):

Chris Simpkins (Georgia Tech) CS 1331 Data Abstraction 8 / 10



Invoking Methods on Objects

The line:
Complex c = a.plus(b);

invokes the plus method on the a object, passing the b object as an
argument, which binds the object referenced by b to the parameter
other:

a.plus(other= b ) {

double resultReal = this.real + b .real; // 1.0 + 3.0

double resultImaginary = this.imaginary + b .imaginary; // 2.0 + 4.0

return new Complex(resultReal, resultImaginary);

}

which returns a new Complex object and assigns its address to the
reference variable c.

Chris Simpkins (Georgia Tech) CS 1331 Data Abstraction 9 / 10



Using the Complex Class
Users, or clients of the Complex class can then write code like this:
Complex a = new Complex(1.0, 2.0);

Complex b = new Complex(3.0, 4.0);

Complex c = a.plus(b);

without being concerned with Complex’s implementation (which could
use polar form, for example). Clients (i.e., users) of the Complex class
need only be concerned with its interface, or API (application
programmer interface) – the public methods of the class.

After the code above we have the following Complex objects in
memory:

Chris Simpkins (Georgia Tech) CS 1331 Data Abstraction 10 / 10


	5434A429-17D0-4EE4-9C82-3F6965DDD84A: Off


