
Introduction to Object-Oriented Programming
Exceptions

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Exceptions 1 / 17

Erorr Handling Code

Consider this code from Company.java:
employees = initFromFile2(new File(empDataFile));
if (null == employees) {

System.out.println("There was an error initializing employees.");
System.out.println("Perhaps " + empDataFile + " doesn’t exist?");
System.exit(1);

}

The main logic and error-handling logic are intertwined (not
complex in this case, but could be much worse in other cases)
We have to remember to check for the sentinel value that
indicates an error
We have to remember what the sentinel value is (null in this
case)
If we wanted to distinguish between different kinds of errors, we’d
have to have multiple sentinel values
The compiler doesn’t force us to handle errors

CS 1331 (Georgia Tech) Exceptions 2 / 17

http://www.cs1331.org/code/employee/Company.java

Exceptions

An exception is
an event that occurs during the execution of a program that
disrupts the normal flow of instructions
(Java Tutorial - Exceptions);
a violation of the semantic constraints of a program;
an object that you create when an exception occurs.

An exception is said to be
thrown from the point where it occurred and
caught at the point to which control is transferred (JLS §11).

The basic syntax is:
try {

// Code that may throw an exception
} catch (Exception e) {

// Code that is executed if an exception is
// thrown in the try-block above

}

We’llCS 1331 (Georgia Tech) Exceptions 3 / 17

http://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-11.html

Using Exceptions

Here’s our previous example rewritten to use exceptions:
try {

employees = initFromFile(new File(employeeDataFile));
} catch (FileNotFoundException e) {

System.out.println("Need an employee data file.");
System.out.println(e.getMessage());

} ...

initFromFile() declares that it throws
FileNotFoundException and some other exceptions:
private List<Employee> initFromFile(File empData)

throws FileNotFoundException, IOException, ParseException {

The fact that initFromFile declares that it throws checked
exceptions (more later) means javac will require us to handle the
exceptions.

CS 1331 (Georgia Tech) Exceptions 4 / 17

try Statements

try {
initFromFile(new File(employeeDataFile));

} catch (FileNotFoundException e) {
System.out.println("Need an employee data file.");
System.out.println(e.getMessage());

} ...

If initFromFile() does throw a FileNotFoundException,
control is transferred to the catch block.
The FileNotFoundException object that is thrown from
initFromFile() is bound to the variable e in the catch block.
The absence of the specified file is a violation of a semantic
constraint of the initFromFile method (which it propagates
from FileReader - more later).

Now you know the basics. Let’s explore the details ...

CS 1331 (Georgia Tech) Exceptions 5 / 17

Run-Time Exception Handling

Throwing an exception causes a nonlocal transfer of control from the
point where the exception is thrown to the nearest dynamically
enclosing catch clause.

A statement or expression is dynamically enclosed by a catch
clause if it appears within the try block of the try statement of
which the catch clause is a part, or if the caller of the
statement or expression is dynamically enclosed by the catch
clause. – JLS §11.3

More simply, a statement is dynamically enclosed by a catch clause if it
is

contained within the corresponding try block of the catch clasuse,
or
within a method (or constructor) that is called within the
corresponding try block of the catch clause.

CS 1331 (Georgia Tech) Exceptions 6 / 17

http://docs.oracle.com/javase/specs/jls/se7/html/jls-11.html#jls-11.3

Identifying a Dynamically Enclosing Catch Clause

public Company(String employeeDataFile) {
try {

employees = initFromFile(new File(employeeDataFile));

} catch (FileNotFoundException e) {

System.out.println("Missing employee file:" + e.getMessage());
}

}
private void initFromFile(File empData) throws FileNotFoundException {

BufferedReader reader =

new BufferedReader(new FileReader(empData));

}

The highlighted statement in initFromFile is dynamically enclosed
by the highlighted catch clause in the Company constructor because it
is within a method that is called within the coresposnding try block of
the catch clause (and the statement within the FileReader
constructor that acutally throws the exception is also dynamically
enclosed by the highlighted catch clause).

CS 1331 (Georgia Tech) Exceptions 7 / 17

Catch Block Parameters
public Company(String employeeDataFile) {

try {
employees = initFromFile(new File(employeeDataFile));

} catch (FileNotFoundException e) {

System.out.println("Missing employee file:" + e.getMessage());
}

}
private void initFromFile(File empData) throws FileNotFoundException {

BufferedReader reader =

new BufferedReader(new FileReader(empData));

}

If new FileReader(empData) throws a
FileNotFoundException, it will be caught in the catch block
and bound to the catch block’s parameter e.
The object e has type FileNotFoundException and can be
used just like any other object.
FileNotFoundException is a standard library exception, so
you can look up its API documentation just like any other standard
library class.

CS 1331 (Georgia Tech) Exceptions 8 / 17

Java’s Exception Hierarchy

Most (checked) exceptions will subclass
Exception

Most uncheked exceptions will subclass
RuntimeException

Error is for compiler hackers. Don’t
use it directly.

CS 1331 (Georgia Tech) Exceptions 9 / 17

Checked and Unchecked Exceptions

Checked exceptions are subclasses of Throwable that are not
subclasses of RuntimeException or Error. The compiler requires
that checked exceptions declared in the throws clauses of methods are
handled by:

a dynamically enclosing catch clause, or
a throws declaration on the enclosing method or constructor.

This rule is sometimes called “catch or specify” or “catch or declare.”

Unchecked exceptions (subclasses of RuntimeException or Error)
are not subject to the catch or declare rule.

CS 1331 (Georgia Tech) Exceptions 10 / 17

Catch or Declare

For example, here are the two ways to deal with the
FileNotFoundException thrown by initFromFile.

Catch:
public Company(String employeeDataFile) {
// ...
try {

employees = initFromFile(new File(employeeDataFile));

} catch (FileNotFoundException e) {

System.out.println(e.getMessage());
}

}

Declare:
public Company(String employeeDataFile) throws FileNotFoundException {

// ...
initFromFile(new File(employeeDataFile));

}

CS 1331 (Georgia Tech) Exceptions 11 / 17

Throwing Exceptions is a Control Flow Mechanism

What does this code print?
public class Wee {

static void bar() throws Throwable {
throw new Throwable("Wee!");

}

static void foo() throws Throwable {
bar();
System.out.println("Foo!");

}

public static void main(String[] args) {
try {

foo();
} catch (Throwable t) {

System.out.println(t.getMessage());
}
System.out.println("I’m still running.");

}
}

CS 1331 (Georgia Tech) Exceptions 12 / 17

Taking Advantage of Unchecked Exceptions

We’ve been using the Scanner class without having to handle
exceptions because its methods throw unchecked exceptions. But we
can make use of these exceptions to make our code more robust.
Scanner kbd = new Scanner(System.in);
int number = 0;
boolean isValidInput = false;
while (!isValidInput) {

try {
System.out.print("Enter an integer: ");
number = kbd.nextInt();
// If nextInt() throws an exception, we won’t get here
isValidInput = true;

} catch (InputMismatchException e) {
// This nextLine() consumes the token that
// nextInt() couldn’t translate to an int.
String input = kbd.nextLine();
System.out.println(input + " is not an integer.");
System.out.println("Try again.");

}
}

CS 1331 (Georgia Tech) Exceptions 13 / 17

Multiple Catch Clauses

Two important points in writing multiple catch clauses for a try
statement:

The exception type in a catch clause matches subclasses.
The first catch clause that matches an exception is the (only) one
that executes.

This means that you should order your catch clauses from most
specific (most derived, lowest in exception class hierarchy) to least
specific (highest in exception class hierarchy).

CS 1331 (Georgia Tech) Exceptions 14 / 17

Writing and Using Your Own Exceptions

Define your own exception classes by subclassing Exception (for
checked exceptions) or RuntimeException (for unchecked
exceptions).
public class MyException extends Exception {

public MyException(String msg) {
super(msg);

}
}

And use them just like any other exception:
if (checkProblem()) {

throw new MyException("Oops!");
}

But remember: in most cases there is an Exception class in the
standard library that you can use. Don’t write your own exception
classes unless you really need to.

CS 1331 (Georgia Tech) Exceptions 15 / 17

Use The Most Specific Applicable Exception

Recall our Company constructor:
try {

employees = initFromFile(new File(employeeDataFile));
} catch (FileNotFoundException e) {

//...
} catch (ParseException e) {

//...
} catch (Exception e) {

//...
}

With separate exceptions we can take more specific actions, e.g.:
We can tell the user to check for the right file
(FileNotFoundException).
We can tell the user that the data file is malformed
(ParseException).

CS 1331 (Georgia Tech) Exceptions 16 / 17

Final Thoughts

Use exceptions for their intended purpose: separating your core
logic from the code that handles exceptional conditions.
Use exceptions judiciously (not too many).
Think about how you handle exceptions:

have sound reasons for propagating exceptions you propagate
have sound reasons for catching exceptions where you catch them
recover if you can
store information in your exceptions to aid in debugging or error
recovery by the user

CS 1331 (Georgia Tech) Exceptions 17 / 17

