
Introduction to Object-Oriented Programming
Hashed Collections

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Hashed Collections 1 / 16



The Collections Framework

A collection is an object that represents a group of objects.
The collections framework allows different kinds of collections to
be dealt with in an implementation-independent manner.

CS 1331 (Georgia Tech) Hashed Collections 2 / 16



Well-Behaved Elements

Collections library provides many useful implementations and
algorithms. To make maximum use of these collections, your classes
should

Implement Comparable<T> so that collections whose elements
are instances of your classes can be passed to algorithms that
rely on the Comparable<T> interface,
override equals so that collections whose elements are instances
of your classes can be queried for element membership, and
override hashCode so that hash-based collections will work
properly with instances of your classes.

Today we’ll learn in more detail why you should override hashCode
any time you override equals.

CS 1331 (Georgia Tech) Hashed Collections 3 / 16



The equals Method and Collections

A class whose instances will be stored in a collection must have a
properly implemented equals method.
The contains method in collections uses the equals method in
the stored objects.
The default implementation of equals (object identity - true only
for same object in memory) only rarely gives correct results.
Note that hashCode() also has a defualt implementation that
uses the object’s memory address. As a rule, whenever you
override equals, you should also override hashCode, which we’ll
also learn today.

CS 1331 (Georgia Tech) Hashed Collections 4 / 16



equals Method Examples
In this simple class hierarchy, FoundPerson has a properly
implemented equals method and LostPerson does not.
public class ArrayListEqualsDemo {

static abstract class Person {
public String name;
public Person(String name) { this.name = name; }

}
static class LostPerson extends Person {

public LostPerson(String name) { super(name); }
}
static class FoundPerson extends Person {

public FoundPerson(String name) { super(name); }

public boolean equals(Object other) {
if (this == other) return true;
if (!(other instanceof Person)) return false;
return ((Person) other).name.equals(this.name);

}
}

Examine the code in ArrayListEqualsDemo.java to see the
consequences.

CS 1331 (Georgia Tech) Hashed Collections 5 / 16

http://www.cs1331.org/code/collections/ArrayListEqualsDemo.java


equals and hashCode

java.lang.Object has another method used by collections:
public int hashCode()

The hashCode method maps an object to an int which can be
used to find the object in a kind of data structure known as a hash
table.
Java’s hash-based data structures, HashSet and HashMap use
hash tables to store elements and keys.
The point of a hash code is that it can be computed in constant
time, so hashtables allow very fast lookups.
Every object’s hashCode method should return a consistent hash
code that is not necessarily unique among all objects.

More specifically ...

CS 1331 (Georgia Tech) Hashed Collections 6 / 16



hashCode’s Contract
Whenever it is invoked on the same object more than once during
an execution of a Java application, the hashCode method must
consistently return the same integer, provided no information used
in equals comparisons on the object is modified. This integer
need not remain consistent from one execution of an application
to another execution of the same application.
If two objects are equal according to the equals(Object)
method, then calling the hashCode method on each of the two
objects must produce the same integer result.
It is not required that if two objects are unequal according to the
equals(java.lang.Object) method, then calling the
hashCode method on each of the two objects must produce
distinct integer results. However, the programmer should be aware
that producing distinct integer results for unequal objects may
improve the performance of hash tables.

CS 1331 (Georgia Tech) Hashed Collections 7 / 16



A Correct but Terrible hashCode()

public int hashCode() {
return 1;

}

This hashCode is correct because
it returns the same value on subsequent invocations,
a.hashCode() == b.hashCode() when a.equals(b), and
It’s legal for a.hashCode() == b.hashCode() when
!a.equals(b).

However, the programmer should be aware that producing distinct
integer results for unequal objects may improve the performance of
hash tables.

CS 1331 (Georgia Tech) Hashed Collections 8 / 16



A 5-Minute Introduction to Hash Tables

A hash table stores its elements in "buckets" that are addressed
with ints.
An object’s hashCode determines which bucket the object will be
stored in.
Buckets are accessed very quickly, roughly as quickly as array
indexing.
If each bucket only has one element – because each element has
a unique hash code – then every element can be retrieved equally
fast.
When multiple elements have the same hashCode (a "hash
collision") they go into the same bucket, which stores the elements
in a linked list (which has slower access)

CS 1331 (Georgia Tech) Hashed Collections 9 / 16



An Example Hash Function

Here’s a hash function based on the first letter of the name:
public class Person {

private String name;
public int hashCode() { return name.charAt(0) - ’A’; }

}

Then Aaron, Brent, Evan and Ethan would be stored like this:

CS 1331 (Georgia Tech) Hashed Collections 10 / 16



A Legal but Bad hashCode

Recall our correct but terrible hashCode:
public int hashCode() { return 1; }

Using this hashCode the hash table degenerates to a linked list:

CS 1331 (Georgia Tech) Hashed Collections 11 / 16



How Items are Found in a Hash-Based Collection
The item’s hashCode is used to access the right bucket, then its
equals method is used to match elements in the bucket.

If you override equals, you must override hashCode!
CS 1331 (Georgia Tech) Hashed Collections 12 / 16



A Recipe for Implementing hashCode1

You’ll learn hashing in depth in your data structures and algorithms
course. For now, here’s a recipe to follow:

1 Initialize result with a constant non-zero value, e.g., 17
2 For each significant field f (i.e., compared in equals method),

compute an int hash code c and add it to 31 * result.
For boolean fields, c = (f ? 1 : 0)
For byte, char, short, int fields, c = (int) f
For long fields, c = (int) (f ^ (f >>> 32 ))
For float fields, c = Float.floatToIntBits(f)
For double fields,
c = (int) (Double.doubleToLongBits(f) ^

(Double.doubleToLongBits(f) >>> 32))
(notice this converts to long then uses recipe for long fields)
For reference fields, if equals calls equals on the field, c =
f.hashCode()
For array fields, c = Arrays.hashCode(f)

3 return result
1Joshua Bloch, Effective Java

CS 1331 (Georgia Tech) Hashed Collections 13 / 16



An Example hashCode Using Recipe2

class Trooper implements Comparable<Trooper> {

private String name;
private boolean mustached;

...
public boolean equals(Object other) {

if (null == other) return false;
if (this == other) return true;
if (!(other instanceof Trooper)) return false;
Trooper that = (Trooper) other;
return this.name.equals(that.name)

&& this.mustached == that.mustached;
}
public int hashCode() {

int result = 17;
result = 31 * result + name.hashCode();
result = 31 * result + (mustached ? 1 : 0);
return result;

}
}

2Joshua Bloch, Effective Java
CS 1331 (Georgia Tech) Hashed Collections 14 / 16



Consequences of Failing to Override hashCode

Set<Trooper> trooperSet = HashSet<>();
// ...
trooperSet.add(new Trooper("Mac", true));

// Mac is in the set, but we don’t find him because we didn’t
// override hashCode().
System.out.println("\nOops! Didn’t override hashCode():");
System.out.println("trooperSet.contains(new Trooper(\"Mac\", true))="

+ trooperSet.contains(new Trooper("Mac", true)));

prints:

Oops! Didn’t override hashCode():
trooperSet.contains(new Trooper("Mac", true))=false

Open up HashTroopers.java and let’s fix this!

CS 1331 (Georgia Tech) Hashed Collections 15 / 16

http://www.cs1331.org/code/collections/super-troopers/HashTroopers.java


Closing Thoughts on Collections

The collections framework uses Java’s OOP programming
features to acheive generality and consistency.
Collection classes are very useful - study the Java API docs to
become familiar with them.
In a few weeks we’ll implement several basic data structures.

Computer scientists need a deep understanding of data structures.
Application programmers should almost always use predefined
data structures from the standard library.

CS 1331 (Georgia Tech) Hashed Collections 16 / 16


