
Introduction to Object-Oriented Programming
Inheritance, Part 1 of 2

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 1 / 15



Programming in the Large

Software is complex. Three ways we deal with complexity:
Abstraction - boiling a concept down to its essential elements,
ignoring irrelevant details
Decomposition - decompose system into packages, classes,
functions
Reuse - reuse library function in many diferent places

Today we introduce another kind of resuse: inheritance

CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 2 / 15



What is inheritance?

1

1Source: http://talentenbank.com/can-you-really-make-inheritance-into-a-good-
financial-move-in-the-long-run

CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 3 / 15



What is inheritance?

More like genetics ...

2

... but a programming concept that, like so much in CS, borrows a term
from another field to leverage our intuition.

2Source: http://www.dnaftb.org/5/
CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 4 / 15



Inheritance

Inheritance: deriving one class from another class.
public class Employee { ... }
public class HourlyEmployee extends Employee { ... }
public class SalariedEmployee extends Employee { ... }

Employee is the base class or superclass
HourlyEmployee and SalariedEmployee are derived classes
or subclasses
Subclasses inherit the interface and implementation of their
superclass(es)
extends is the Java syntax for inheriting from another class

Important idea to plant in your head now: subclassing is about concept
reuse not merely implementation reuse. For example,
HourlyEmployee is-a Employee conceptually.

CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 5 / 15



Superclasses

Consider the superclass Employee1:3

public class Employee1 {
private String name;
private Date hireDate;

public Employee1(String aName, Date aHireDate) {
disallowNullArguments(aName, aHireDate);
name = aName;
hireDate = aHireDate;

}
public String getName() {

return name;
}
public Date getHireDate() {

return hireDate;
} // and toString(), etc. ...

}

Employee defines the basic information needed to define any
employee.

3Note that we’ll number the versions of our Employee classes like we did with Card.
CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 6 / 15

http://www.cs1331.org/code/employee/Employee1.java


Subclasses

The extends clause names the direct superclass of the current class
(JLS §8.1.4).
Here is a subclass of Employee1, HourlyEmployee1:
public class HourlyEmployee extends Employee {

public HourlyEmployee(String aName, Date aHireDate) {
super(aName, aHireDate);

}
}

HourlyEmployee inherits all the members of Employee
HourlyEmployee can’t access private members of Employee
directly
The super call in the constructor calls Employee’s constructor to
initialize HourlyEmployee instances

The HourlyEmployee concept extends the Employee concept.
CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 7 / 15

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.1.4)
http://www.cs1331.org/code/employee/HourlyEmployee1.java


super Subtleties

If present, an explicit super call must be the first statement in a
constructor.
If an explicit super call is not present and the superclass has a
no-arg constructor, super() will implicitly be the first statement in
any constructor
If there is no no-arg constructor in a superclass (for example, if the
superclass defines other constructors without explicitly defining a
no-arg constructor), then subclass constructors must explicitly
include a super call.

Together, these rules enforce an “inside-out” construction order for
objects: the highest superclass piece of an object is initialzed first,
followed by the second highest, and so on.

CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 8 / 15



Subclass Constructors

Recall our definitions of Employee1 and HourlyEmployee1.
public class Employee1 {

// The only constructor in Employee
public Employee1(String aName, Date aHireDate) {

disallowNullArguments(aName, aHireDate);
name = aName;
hireDate = aHireDate;

}
// ...

}

public class HourlyEmployee1 extends Employee1 {

public HourlyEmployee1(String aName, Date aHireDate) {
super(aName, aHireDate);

}
}

Would HourlyEmployee1.java compile if we left off the constructor
definition?

CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 9 / 15



Inherited Members

Given our previous definitions of Employee1 and HourlyEmployee1,
we can write code like this (from EmployeeDemo1):
DateFormat df = DateFormat.getDateInstance();
HourlyEmployee eva = new HourlyEmployee("Eva L. Uator",

df.parse("February 18, 2013"));
System.out.println(eva.getName() + " was hired on "

+ eva.getHireDate());

Note that
we didn’t have to define getName and getHireDate in
HourlyEmployee

our current implementation of HourlyEmployee doesn’t add
anything to Employee

CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 10 / 15

http://www.cs1331.org/code/employee/EmployeeDemo1.java


Subclasses Specialize Superclasses

We define subclasses to extend or specialize the functionality of their
superclasses. Let’s add suitable extensions to HourlyEmployee:4

public class HourlyEmployee2 extends Employee2 {
private double hourlyWage;
private double monthlyHours;

public HourlyEmployee(String aName, Date aHireDate,
double anHourlyWage, double aMonthlyHours) {

super(aName, aHireDate);
disallowZeroesAndNegatives(anHourlyWage, aMonthlyHours);
hourlyWage = anHourlyWage;
monthlyHours = aMonthlyHours;

}
public double getHourlyWage() { return hourlyWage;}
public double getMonthlyHours() { return monthlyHours;}
public double getMonthlyPay() { return hourlyWage * monthlyHours; }
// ...

}

Food for thought: what is the monthly pay rule for HourlyEmployees?
What if an employee works more than 40 hours per week?

4Employee2 is the same as Employee1, but we’ll keep the numbers consistent to
avoid confusion.CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 11 / 15



Access Restrictions Extend to Subclasses

private members of superclasses are present in subclasses, but
can’t be directly accessed. So this won’t compile:
public class HourlyEmployee2 extends Employee2 {
// ...
public String toString() {

return name + "; Hire Date: " + hireDate + "; Hourly Wage: "
+ hourlyWage + "; Monthly Hours: " + monthlyHours;

}
}

because name and hireDate are private in Employee. But their
getter methods are public:
public class HourlyEmployee2 extends Employee2 {
// ...
public String toString() {

return getName()+"; Hire Date: "+getHireDate() +"; Hourly Wage: "
+ hourlyWage + "; Monthly Hours: " + monthlyHours;

}
}

CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 12 / 15



Overriding Methods
Overriding a method means providing a new definition of a superclass
method in a subclass. We’ve been doing this all along with toString
and equals, which are defined in java.lang.Object, the highest
superclass of all Java classes.
public class Object {

public String toString() {
return getClass().getName() + "@"

+ Integer.toHexString(hashCode());
}
public boolean equals(Object obj) {

return (this == obj);
}

}

We redefine these on our classes because
the default implementation of toString just prints the class
name and hash code (which is the memory address by default).
the default implementation of equals just compares object
references, i.e., identity equality, when what we want from equals
is value equality

CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 13 / 15



@Override Annotation

The optional @Override annotation informs the compiler that the
element is meant to override an element declared in a superclass.
public class Employee2 {
// ...
@Override
public String toString() {

return name + "; Hire Date: " + hireDate;
}

}

Now if our subclass’s toString() method doesn’t actually override
Java.lang.Object’s (or some other class’s) toString(), the
compiler will tell us.

CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 14 / 15

http://docs.oracle.com/javase/tutorial/java/annotations/index.html


Programming Exercise

To get some practice writing classes that use inheritance, write:
A class named Animal with:

A private instance variable name, with a public getter and setter.
(Note: name is a name of an animal, not the animal’s species.)
A single constructor that takes the name of the Animal
A public instance method speak that returns a String
representation of the sound it makes.

A class named Dog that extends Animal and specializes the
speak method appropriately.
A Kennel class with

a private instance variable dogs that is an array of Dog
a single constructor that takes a variable number of single Dog
parameters and initializes the dogs instance variable with the
constructor’s actual parameters.
a method soundOff() that prints to STDOUT (System.out) one
line for each Dog in dogs that reads “[dog name] says [output of
speak method]!”, e.g. “Chloe says woof, woof!”

We’ll review this at the start of the next lecture.
CS 1331 (Georgia Tech) Inheritance, Part 1 of 2 15 / 15


