
Introduction to Object-Oriented Programming
Inheritance, Part 2 of 2

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 1 / 14

Access Modifiers

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

Every class has an access level (for now all of our classes are
public).
Every member has an access level.
The defulat access level, no mofifier, is also called “package
private.”

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 2 / 14

Explicit Constructor Invocation with this

What if we wanted to have default default values for hourly wages and
monthly hours? We can provide an alternate constructor that
delegates to our main constructor with this HourlyEmployee3.java:
public final class HourlyEmployee3 extends Employee3 {

/**
* Constructs an HourlyEmployee with hourly wage of 20 and

* monthly hours of 160.

*/
public HourlyEmployee3(String aName, Date aHireDate) {

this(aName, aHireDate, 20.00, 160.0);
}
public HourlyEmployee3(String aName, Date aHireDate,

double anHourlyWage, double aMonthlyHours) {
super(aName, aHireDate);
disallowZeroesAndNegatives(anHourlyWage, aMonthlyHours);
hourlyWage = anHourlyWage;
monthlyHours = aMonthlyHours;

}
// ...

}

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 3 / 14

http://www.cs1331.org/code/employee/HourlyEmployee3.java

this and super

If present, an explicit constructor call must be the first statement in
the constructor.
Can’t have both a super and this call in a constructor.
A constructor with a this call must call, either directly or
indirectly, a constructor with a super call (implicit or explicit).

public final class HourlyEmployee3 extends Employee3 {
public HourlyEmployee3(String aName, Date aHireDate) {

this(aName, aHireDate, 20.00);
}
public HourlyEmployee3(String aName, Date aHireDate, double
anHourlyWage) {

this(aName, aHireDate, anHourlyWage, 160.0);
}
public HourlyEmployee3(String aName, Date aHireDate,

double anHourlyWage, double aMonthlyHours) {
super(aName, aHireDate);
disallowZeroesAndNegatives(anHourlyWage, aMonthlyHours);
hourlyWage = anHourlyWage;
monthlyHours = aMonthlyHours;

}
// ...

}

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 4 / 14

The Liskov Substitution Principle (LSP)

Subtypes must be substitutable for their supertypes.

Consider the method:
public static Date vestDate(Employee employee) {

Date hireDate = employee.getHireDate();
int vestYear = hireDate.getYear() + 2;
return new Date(vestYear,

hireDate.getMonth(),
hireDate.getDay());

}

We can pass any subtype of Employee to this method:
DateFormat df = DateFormat.getDateInstance();
HourlyEmployee eva = new HourlyEmployee("Eva L. Uator",

df.parse("February 13, 2013"), 20.00, 200);
Date evaVestDate = vestDate(eva);

We must ensure that subtypes are indeed substitutable for supertypes.

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 5 / 14

LSP Counterexample

A suprising counter-example:
public class Rectangle {
public void setWidth(double w) { ... }
public void setHeight(double h) { ... }

}
public class Square extends Rectangle {
public void setWidth(double w) {

super.setWidth(w);
super.setHeight(w);

}
public void setHeight(double h) {

super.setWidth(h);
super.setHeight(h);

}
}

We know from math class that a square “is a” rectangle.
The overridden setWidth and setHeight methods in Square
enforce the class invariant of Square, namely, that width ==
height.

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 6 / 14

LSP Violation

Consider this client of Rectangle:
public void g(Rectangle r) {
r.setWidth(5);
r.setHeight(4);
assert r.area() == 20;

}

Client (author of g) assumes width and height are independent in
r becuase r is a Rectangle.
If the r passed to g is actually an instance of Square, what will be
the value of r.area()?

The Object-oriented is-a relationship is about behavior. Square’s
setWidth and setHeight methods don’t behave the way a
Rectangle’s setWidth and setHeight methods are expected to
behave, so a Square doesn’t fit the object-oriented is-a Rectangle
definition. Let’s make this more formal ...

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 7 / 14

Conforming to LSP: Design by Contract

Require no more, promise no less.

Author of a class specifies the behavior of each method in terms of
preconditions and postconditions. Subclasses must follow two rules:

Preconditions of overriden methods must be equal to or weaker
than those of the superclass (enforces or assumes no more than
the constraints of the superclass method).
Postconditions of overriden methods must be equal to or greater
than those of the superclass (enforces all of the constraints of the
superclass method and possibly more).

In the Rectangle-Square case the postcondition of Rectangle’s
setWidth method:
assert((rectangle.w == w) && (rectangle.height == old.height))

cannot be satisfied by Square, which tells us that a Square doesn’t
satisfy the object-oriented is-a relationship to Rectangle.

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 8 / 14

LSP Conforming 2D Shapes

public interface 2dShape {
double area();

}
public class Rectangle implements 2dShape {

public void setWidth(double w) { ... }
public void setHeight(double h) { ... }
public double area() {

return width * height;
}

}
public class Square implements 2dShape {

public void setSide(double w) { ... }
public double area() {

return side * side;
}

}

Notice the use of an interface to define a type.

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 9 / 14

http://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

Interfaces

An interface represents an object-oriented type: a set of public
methods (declarations, not definitions) that any object of the type
supports. Recall the 2dShape interface:
public interface 2dShape {

double area();
}

You can’t instantiate interfaces. So you must define a class that
implements the interface in order to use it. Implementing an interface
is similar to extending a class, but uses the implements keyword:
public class Square implements 2dShape {

public void setSide(double w) { ... }
public double area() {

return side * side;
}

}

Now a Square is-a 2dShape.
CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 10 / 14

Interfaces Define a Type
public interface 2dShape {

double area();
}

This means that any object of type 2dShape supports the area
method, so we can write code like this:
public double calcTotalArea(2dShape ... shapes) {

double area = 0.0;
for (2dShape shape: shapes) {

area += shape.area();
}
return area;

}

Two kinds of inheritance: implementation and interface inheritance.

extending a class means inheriting both the interface and the
implementation of the superclass
implementing an interface means inheriting only the interface, that
is, the public methods

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 11 / 14

Default Methods in Interfaces

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 12 / 14

Conflict Resolution for Default Methods

Superclasses win.
Interfaces clash.

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 13 / 14

Static Methods in Interfaces

CS 1331 (Georgia Tech) Inheritance, Part 2 of 2 14 / 14

