
Introduction to Object-Oriented Programming
Iterators and Streams

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Iterators and Streams 1 / 20



The Collections Framework

A collection is an object that represents a group of objects.
The collections framework allows different kinds of collections to
be dealt with in an implementation-independent manner.

CS 1331 (Georgia Tech) Iterators and Streams 2 / 20



Collection Framework Components

The Java collections framework consists of:
Collection interfaces representing different types of collections
(sets, lists, etc)
General purpose implementations (like ArrayList or HashSet)
Absract implementations to support custom implementations
Algorithms defined in static utility methods that operate on
collections (like Collections.sort(List<T> list))
Infrastructure interfaces that support collections (like
Iterator)

Today we’ll learn a few basic concepts, then tour the collections library.

CS 1331 (Georgia Tech) Iterators and Streams 3 / 20



The Collection Interface

Collection is the root interface of the collections framework,
declaring basic operations such as:

add(E e) to add elements to the collection
contains(Object key) to determine whether the collection
contains key
isEmpty() to test the collection for emptiness
iterator() to get an interator over the elements of the
collection
remove(Object o) to remove a single instance of o from the
collection, if present
size() to find out the number of elements in the collection

None of the collection implementations in the Java library implement
Collection directly. Instead they implement List or Set.

CS 1331 (Georgia Tech) Iterators and Streams 4 / 20



Iterators

Iterators are objects that provide access to the elements in a
collection. In Java iterators are represented by the Iterator
interface, which contains three methods:

hasNext() returns true if the iteration has more elements.
next() returns the next element in the iteration.
remove() removes from the underlying collection the last
element returned by the iterator (optional operation).

The most basic and common use of an iterator is to traverse a
collection (visit all the elements in a collection):
ArrayList tasks = new ArrayList();
// ...
Iterator tasksIter = tasks.iterator();
while (tasksIter.hasNext()) {

Object task = tasksIter.next();
System.out.println(task);

}

See ArrayListBasics.java for examples.
CS 1331 (Georgia Tech) Iterators and Streams 5 / 20

http://www.cs1331.org/code/collections/ArrayListBasics.java


The Iterable Interface

An instance of a class that implements the Iterable interface can be
the target of a for-each loop. The Iterable interface has one
abstract method, iterator:
public interface Iterable<T> {

Iterator<T> iterator();
}

Let’s see how we can implement an iterator for DynamicArray.java

CS 1331 (Georgia Tech) Iterators and Streams 6 / 20

http://www.cs1331.org/code/collections/DynamicArray.java


DynamicArray

DynamicArray.java is like an ArrayList

public class DynamicArray<E> implements Iterable<E> {

private class DynamicArrayIterator implements Iterator<E> {
???

}
private Object[] elements;
private int lastIndex;

public DynamicArray() { this(10); }
public DynamicArray(int capacity) { ... }
public Iterator<E> iterator() { return new DynamicArrayIterator();
}
public void add(E item) { ... }
public E get(int index) { ... }
public void set(int index, E item) { ... }
public int size() { ... }
public E remove(int index) { ... }

}

Assuming the methods above are defined, how do we write
DynamicArrayIterator?CS 1331 (Georgia Tech) Iterators and Streams 7 / 20

http://www.cs1331.org/code/collections/DynamicArray.java


DynamicArrayIterator

The key component of an iterator is a cursor: a pointer to the next
element in the collection.

Since DynamicArray uses an array as its backing data store, the
cursor is simply an index into this array
The first element to be accessed is at index 0

public class DynamicArray<E> implements Iterable<E> {
private class DynamicArrayIterator implements Iterator<E> {

private int cursor = 0;

public boolean hasNext() {
return cursor <= lastIndex;

}
public E next() {

if (!hasNext()) { throw new NoSuchElementException(); }
E answer = get(cursor++);
return answer;

}
public void remove() {

DynamicArray.this.remove(cursor - 1);
}

}
private Object[] elements;
private int lastIndex;

CS 1331 (Georgia Tech) Iterators and Streams 8 / 20



DynamicArrayIterator’s next Method

An Iterator’s next method

returns the element the cursor currently points to, and
moves the cursor to the next element in the collection

public class DynamicArray<E> implements Iterable<E> {
private class DynamicArrayIterator implements Iterator<E> {

private int cursor = 0;

public boolean hasNext() { ... }
public E next() {

if (!hasNext()) { throw new NoSuchElementException(); }
E answer = get(cursor++);
return answer;

}
public void remove() { ... }

}
private Object[] elements;
private int lastIndex;

CS 1331 (Georgia Tech) Iterators and Streams 9 / 20



DynamicArrayIterator’s hasNext Method

An Iterator’s hasNext method
is used by clients of the Iterator to determine whether unvisited
elements of the collection remain
for DynamicArray we simply test whether the cursor is still a
valid array index

public class DynamicArray<E> implements Iterable<E> {
private class DynamicArrayIterator implements Iterator<E> {

private int cursor = 0;

public boolean hasNext() {
return cursor <= lastIndex;

}
public E next() {

if (!hasNext()) { throw new NoSuchElementException(); }
E answer = get(cursor++);
return answer;

}
public void remove() { ... }

}
private Object[] elements;
private int lastIndex;CS 1331 (Georgia Tech) Iterators and Streams 10 / 20



DynamicArrayIterator’s remove Method
removes the last element returned by the iterator
the only safe way to modify a collection being iterated over

We simply use the DynamicArray’s ’remove method
public class DynamicArray<E> implements Iterable<E> {

private class DynamicArrayIterator implements Iterator<E> {
private int cursor = 0;
public boolean hasNext() { return cursor <= lastIndex; }
public E next() {

if (!hasNext()) { throw new NoSuchElementException(); }
E answer = get(cursor++);
return answer;

}
public void remove() {

DynamicArray.this.remove(cursor - 1);
}

}

Notice the syntax for distinguishing between the enclosing class’s
remove method and the inner class’s remove method.
What if we called the inner class’s remove method recursively?

CS 1331 (Georgia Tech) Iterators and Streams 11 / 20



The Iterable Interface and teh For-Each Loop

An instance of a class that implements Iterable can be the target of
a for-each loop.

DynamicArray<String> da = new DynamicArray<>(2);
da.add("Stan");
da.add("Kenny");
da.add("Cartman");
System.out.println("da contents:");
for (String e: da) {

System.out.println(e);
}

See DynamicArray.java for implementation details.

CS 1331 (Georgia Tech) Iterators and Streams 12 / 20

http://www.cs1331.org/code/collections/DynamicArray.java


Streams and Pipelines

A stream is a sequence of elements.
Unlike a collection, it is not a data structure that stores elements.
Unlike an iterator, streams do not allow modification of the
underlying source

A stream carries values from a source through a pipeline.

A pipeline contains the following components:

A source: This could be a collection, an array, a generator
function, or an I/O channel.
Zero or more intermediate operations. An intermediate operation,
such as filter, produces a new stream
A terminal operation. A terminal operation, such as forEach,
produces a non-stream result, such as a primitive value (like a
double value), a collection, or in the case of forEach, no value at
all.

CS 1331 (Georgia Tech) Iterators and Streams 13 / 20



Stream Example: How Many Mustaches?

Consider this simple example from SuperTroopers.java:
long mustaches =

troopers.stream().filter(Trooper::hasMustache).count();
System.out.println("Mustaches: " + mustaches);

troopers.stream() is the source
.filter(Trooper::hasMustache) is an intermediate
operation
.count() is the terminal operation

The terminal operation yields a new value which results from applying
all the intermediate operations and finally the terminal operation to the
source.

CS 1331 (Georgia Tech) Iterators and Streams 14 / 20

http://www.cs1331.org/code/collections/SuperTroopers.java


A Bigger Stream Example: WordCount Pipeline

Consider this example from WordCounts:
Set<String> stopWords = new HashSet<>(Arrays.asList(

"a", "an", "and", "are", "as", "be", "by", "is", "in", "of",
"for", "from", "not", "to", "the", "that", "this", "with", "which"

));
wc.wordCounts.entrySet().stream()

.filter(entry -> !stopWords.contains(entry.getKey().toLowerCase()))

.sorted((e1, e2) -> e1.getValue() - e2.getValue())

.forEach(entry ->
System.out.printf("%s occurs %d times%n", entry.getKey(),

entry.getValue()));

This code does the same tasks we did before with classes and for
loops.

CS 1331 (Georgia Tech) Iterators and Streams 15 / 20



WordCount Pipeline - Stop Words

Set<String> stopWords = new HashSet<>(Arrays.asList(
"a", "an", "and", "are", "as", "be", "by", "is", "in", "of",
"for", "from", "not", "to", "the", "that", "this", "with", "which"

));

Every document has information-carrying words and grammatical
words that carry no information, like prepositions, verbs like to be
or have, pronouns
In document processing we call these non-information-carrying
words stop words

Here we’ve implemented a naiive and terribly incomplete stop words
list.

BTW, why a HashSet?

CS 1331 (Georgia Tech) Iterators and Streams 16 / 20



WordCount Pipeline - filter

Consider this example from WordCounts:
Set<String> stopWords = new HashSet<>(Arrays.asList(

"a", "an", "and", "are", "as", "be", "by", "is", "in", "of",
"for", "from", "not", "to", "the", "that", "this", "with", "which"

));
wc.wordCounts.entrySet().stream()

.filter(entry -> !stopWords.contains(entry.getKey().toLowerCase()))

.sorted((e1, e2) -> e1.getValue() - e2.getValue())

.forEach(entry ->
System.out.printf("%s occurs %d times%n", entry.getKey(),

entry.getValue()));

The filter operation takes a predicate function.
A predicate function returns a boolean

If predicate function returns true, element is retained in the
stream

Notice that we’re also normalizing words to lower case.

CS 1331 (Georgia Tech) Iterators and Streams 17 / 20



WordCount Pipeline - sorted

Consider this example from WordCounts:
Set<String> stopWords = new HashSet<>(Arrays.asList(

"a", "an", "and", "are", "as", "be", "by", "is", "in", "of",
"for", "from", "not", "to", "the", "that", "this", "with", "which"

));
wc.wordCounts.entrySet().stream()

.filter(entry -> !stopWords.contains(entry.getKey().toLowerCase()))

.sorted((e1, e2) -> e1.getValue() - e2.getValue())

.forEach(entry ->
System.out.printf("%s occurs %d times%n", entry.getKey(),

entry.getValue()));

The sorted operation takes a Comparator that defines the ordering
over the stream’s elements.

CS 1331 (Georgia Tech) Iterators and Streams 18 / 20



WordCount Pipeline - forEach

Consider this example from WordCounts:
Set<String> stopWords = new HashSet<>(Arrays.asList(

"a", "an", "and", "are", "as", "be", "by", "is", "in", "of",
"for", "from", "not", "to", "the", "that", "this", "with", "which"

));
wc.wordCounts.entrySet().stream()

.filter(entry -> !stopWords.contains(entry.getKey().toLowerCase()))

.sorted((e1, e2) -> e1.getValue() - e2.getValue())

.forEach(entry ->
System.out.printf("%s occurs %d times%n", entry.getKey(),

entry.getValue()));

forEach is the terminal operation.
Called for its effect - no return value

The underlying source is not modified.

CS 1331 (Georgia Tech) Iterators and Streams 19 / 20



Homework: Make the WordCount Pipeline Clearer

Notice that we use anonymous lambda expressions in our WordCOunt
pipeline:
wc.wordCounts.entrySet().stream()

.filter(entry -> !stopWords.contains(entry.getKey().toLowerCase()))

.sorted((e1, e2) -> e1.getValue() - e2.getValue())

.forEach(entry ->
System.out.printf("%s occurs %d times%n", entry.getKey(),

entry.getValue()));

Functional-style code can easily become hard to read.
You can improve readability by introducing intermediate helper
variables with informative names.

Rewrite the WordCount pipeline with intermediate helper variables so
that the pipeline is easy to understand. You’ll need to look up these
aggregate operations in the Java API to get the types for these
variables.

CS 1331 (Georgia Tech) Iterators and Streams 20 / 20


