
Introduction to Object-Oriented Programming
JavaFX Events

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) JavaFX Events 1 / 14

Outline

Hello, JavaFX!
Event-driven programming
Hello, buttons!
The observer pattern

CS 1331 (Georgia Tech) JavaFX Events 2 / 14

Hello, JavaFX!

Here’s a minimal JavaFX program:
import javafx.application.Application;
import javafx.scene.control.Label;
import javafx.scene.text.Font;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class HelloJfx extends Application {
public void start(Stage stage) {

Label message = new Label("Hello, JavaFX!");
message.setFont(new Font(100));
stage.setScene(new Scene(message));
stage.setTitle("Hello");
stage.show();

}
}

See HelloJfx.java and the API documentation for JavaFX

CS 1331 (Georgia Tech) JavaFX Events 3 / 14

http://www.cs1331.org/code/javafx/HelloJfx.java
http://docs.oracle.com/javase/8/javafx/api/

javafx.application.Application
JavaFX programs include one class that extends Application,
analogous to having a single class with a main method for console
programs. When running an Application the JavaFX run-time:

1 Constructs an instance of the specified Application class
2 Calls the init() method for application initialization - don’t

construct a Stage or Scene in init()
3 Calls the start(javafx.stage.Stage) method
4 Waits for the application to finish, which happens when either of

the following occur:
the application calls Platform.exit()
the last window has been closed and the implicitExit attribute
on Platform is true, which is the default

5 Calls the stop() method - release resources obtained in init()
init() and stop() have default do-nothing implementaitons. To
write a simple JavaFX program you create a subclass of
Application and put GUI start-up code in the
start(javafx.stage.Stage) method.

CS 1331 (Georgia Tech) JavaFX Events 4 / 14

http://docs.oracle.com/javase/8/javafx/api/javafx/application/Application.html
http://docs.oracle.com/javase/8/javafx/api/javafx/application/Platform.html

Setting the Stage

The JavaFX Stage class is the top level JavaFX container. A primary
stage for your application is constructed by the JavaFX run-time and
passed to your application in the start(javafx.stage.Stage)
method:

@Override public void start(Stage stage) {
Scene root = ...
stage.setScene(new Scene(root));
stage.setTitle("Hello");
stage.show();

}

You construct a Stage for each window in your application, e.g., for
dialogs and pop-ups, and add visual components to the stage using a
scene graph.

CS 1331 (Georgia Tech) JavaFX Events 5 / 14

Setting the Scene

The JavaFX Scene class is the container for all content in a scene
graph. Every Scene has a root node, which may have children (which
is why it’s called a scene graph). In HelloJfx.java we simply used a
Label control as the root node:

@Override public void start(Stage stage) {
Label message = new Label("Hello, JavaFX!");
stage.setScene(new Scene(message));
stage.setTitle("Hello");
stage.show();

}

A typical application will use as its root node a
Group, typically used for graphics and animation components,
a Region class for nodes that can be resized and styled with CSS
(like UI controls or layout panes), or
a Pane subclass for laying out children according to some layout
policy.

CS 1331 (Georgia Tech) JavaFX Events 6 / 14

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Scene.html
http://www.cs1331.org/code/javafx/HelloJfx.java
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/Group.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/Region.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/Pane.html

Event-Driven Programming

So far we’ve done structured sequential programming where the order
of execution is controlled by the programmer. GUIs use event-driven
programming:

User is presented with options.
User actions (and other actions) fire events.
Event handlers execute in response to events.
Order of execution is controlled by the order of events, which the
programmer does not know in advance.

CS 1331 (Georgia Tech) JavaFX Events 7 / 14

Hello, buttons!
public class HelloJfxButtons extends Application {

int count = 0;

@Override public void start(Stage stage) {
Label counterLabel = new Label("Count: 0");
Button incButton = new Button("Increment Count");
incButton.setOnAction(event ->

{ counterLabel.setText("Count: " + (++count)); });

VBox root = new VBox();
root.getChildren().addAll(counterLabel, incButton);
Scene scene = new Scene(root);
stage.setScene(scene);
stage.setTitle("Hello");
stage.show();

}
}

Note that HelloJfxButtons.java uses a VBox as its layout manager.
We’ll have more to say about layout in a future lecture.

CS 1331 (Georgia Tech) JavaFX Events 8 / 14

http://www.cs1331.org/code/javafx/HelloJfxButtons.java
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/VBox.html

Top-Level GUI Program Recipe

The HelloJfxButtons.java example demonstrates a simple recipe for
JavaFX GUI programs:

1 Create UI controls
Label counterLabel = new Label("Count: 0");
Button incButton = new Button("Increment Count");
incButton.setOnAction(event ->

{ counterLabel.setText("Count: " + (++count)); });

2 Add UI controls to a parent node (Group, Region, or Pane)
VBox root = new VBox();
root.getChildren().addAll(counterLabel, incButton);
Scene scene = new Scene(root);

3 Set the stage with the scene graph and show it
stage.setScene(scene);
stage.setTitle("Hello");
stage.show();

CS 1331 (Georgia Tech) JavaFX Events 9 / 14

http://www.cs1331.org/code/javafx/HelloJfxButtons.java

The Observer Pattern in JavaFX

Three particpants in the observer pattern:
An event publisher that fires events
An event object that represent the event
Event handlers that subscribe to event publishers and receive
event objects

Practically speaking, firing an event means calling a method on event
listeners. Let’s look at a concrete example.

CS 1331 (Georgia Tech) JavaFX Events 10 / 14

An Event Publisher:
javafx.scene.control.Button

In HelloJfxButtons.java we set up an increment button like this:
Button incButton = new Button("Increment Count");
incButton.setOnAction(event ->

{ counterLabel.setText("Count: " + (++count)); });

Button’s setOnAction method takes an object that implements
the javafx.event.EventHandler<ActionEvent> interface.

javafx.event.EventHandler<ActionEvent> has one
abstract method: void handle(ActionEvent event)

When the button is pressed, the void handle(ActionEvent
event) is invoked on the object passed to setOnAction, in this
case an anonymous inner class that implements the
EventHandler interface, which was instantiated by a lambda
expression.

CS 1331 (Georgia Tech) JavaFX Events 11 / 14

javafx.event.EventHandler<T>

@FunctionalInterface
public interface EventHandler<T extends Event>

extends EventListener {

/**
* Invoked when a specific event of the type for which this

* handler is registered happens.

*
* @param event the event which occurred

*/
void handle(T event);

}

java.util.EventListener is a tagging interface that all event
listener interfaces must extend (an implementation detail you don’t
need to worry about).

CS 1331 (Georgia Tech) JavaFX Events 12 / 14

Our Button Event Handler

Consider this alternative syntax for setting an event handler for our
button (just to reinforce that a lambda expression is just syntax sugar
for creating anonymous inner class instances of functional interfaces):

incButton.setOnAction(new EventHandler<ActionEvent>() {
public void handle(ActionEvent e) {

counterLabel.setText("Count: " + (++count));
}

});

Our EventHandler captures the counterLabel local variable
(which is effectively final) and the count instance variable
When its handle method is called, it updates the count and (re-)
sets the text on counterLabel with the new count

Three objects cooperating: a Button, a Label, and an
EventHandler to tie them together.

CS 1331 (Georgia Tech) JavaFX Events 13 / 14

Closing Thoughts

Event-driven GUI programming requires a shift in thinking. Putting
the user in control means you have to work harder to

handle order dependencies, e.g., by disabling buttons until certain
actions are taken, and
guide the user, e.g., by following UI guidelines to maximize
familiarity.

Notice how the JavaFX framework contains classes and interfaces
that you extend and implement - OOP in action.

CS 1331 (Georgia Tech) JavaFX Events 14 / 14

