Introduction to Object-Oriented Programming
JavaFX GUIs

Christopher Simpkins

chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) 1/11



Todo GUI

Today we’ll make a GUI for todo lists

Todos
Get a tattoo.
Buy groceries.
Eat nachos.
Play Call of Duty.
Solve P =2 NP.

Cet jiggy with it. Add

Along the way we'll
m Review event handling
Learn two new Ul controls
Learn about nested layouts
See an example of MVC in JavaFX
See a basic use of JavaFX’s properties
CS 1331 (Georgia Tech) 2/11



The Application

Where do we start? The Application:

import javafx.application.Application;
import javafx.stage.Stage;

public class TodoList extends Application {
@Override public void start (Stage stage) {

}
}

And now we just follow our recipe:
m Create Ul controls
m Add Ul controls to a parent node in a scene graph
m Set the stage’s scene graph and show

CS 1331 (Georgia Tech) 3/11



Create Ul Controls

@Override public void start (Stage stage) {
ListView<String> listView = new ListView<String>();

Button addButton = new Button();
addButton.setText ("Add") ;

TextField inputField

new TextField();

And, of course, we’ll need to import these:

import javafx.scene.control.Button;
import javafx.scene.control.ListView;
import javafx.scene.control.TextField;

CS 1331 (Georgia Tech)

4/11




Add Ul Controls to Parent Node - Layout

Get a tattoo.
Buy groceries.
Eat nachos.

Play Call of Duty.
Solve P =2 NP.

Get jiggy with it.

To acheive the layout we want, we’ll nest an HBox inside a VBox:

@Override public void start (Stage stage) {
HBox entryBox = new HBox();
entryBox.getChildren () .addAll (inputField, addButton);

VBox vbox = new VBox();
vbox.getChildren () .addAll (listView, entryBox);
}

CS 1331 (Georgia Tech) 5/11



Setting up and showing the stage

Although we'’re not done with our Ul controls, we go ahead and do the
last step of our recipe so we can run the program:

import javafx.scene.Scene;

/]

public class TodoList extends Application {
@Override public void start (Stage stage) {
VA
Scene scene = new Scene (vbox);
stage.setScene (scene);
stage.setTitle ("Todos");
stage.show () ;

CS 1331 (Georgia Tech) 6/11



The Model-View-Controller Design Pattern

MODEL

UPDATES MANIPULATES

VIEW CONTROLLER
N 7

)
< o
% 0,;,

N\ s/
USER

m The model contains the data that is displayed by the view
m The view displays the data from the model on screen
m The controller gets input from the user and manipulates the model

In JavaFX the view and controller are typically combined.

1http://en.wikipedia.org/wiki/File:MVC*Process.png
CS 1331 (Georgia Tech) 7/11


http://en.wikipedia.org/wiki/File:MVC-Process.png

ListView, ObservableList, and MVC

JavaFX provides model classes that work with Ul controls. For our
ListVview we'll simply use an ObservableList<String>, which
we obtain from FXCollections.observableArrayList ():

import javafx.collections.FXCollections;
import javafx.collections.ObservablelList;

public class TodolList extends Application {
private ObservableList<String> todos;

@Override public void start (Stage stage) {
ObservablelList<String> todos =

FXCollections.observableArrayList ();
ListView<String> listView =

//

new ListView<String> (todos);

CS 1331 (Georgia Tech)

8/11



Handling Model Updates

m Whenever the ObservablelList<String> todos is updated,
the change is automatically reflected in the Listview.

m So all we have to do is add text from the TextField to the
todos list whenever the add button is clicked.

@Override public void start (Stage stage) {

/] ...

addButton.setOnAction (e —-> {
todos.add (inputField.getText ());
inputField.setText ("");
inputField.requestFocus () ;

1)

VA

}

Notice that after the text is added to the list we reset the text field and
give it the focus again.

CS 1331 (Georgia Tech) 9/11



Properties

We don’t want to add empty strings from the TextField to the todos list,
so let’s disable the Add button when the TextField is empty:

import javafx.beans.binding.Bindings;

/] ...
public class TodoList extends Application {
private ObservableList<String> todos;

@Override public void start (Stage stage) {

VA
addButton.disableProperty ()

.bind (Bindings.isEmpty (inputField.textProperty()));
VA

}

Properties play a big role in modern JavaFX programming. This is just
a small taste.

CS 1331 (Georgia Tech) 10/11



Conclusion

Very simple app to get started with Ul controls and MVC.
m GUI programming requires two things:

m Knowledge of GUIs (widgets, how they work, how they’re used)
m Knowledge of a particular GUI framework (like JavaFX)

m The JavaFX classes you've seen make extensive use of OOP.
m GUI programs are straightforward, but get complex quickly.

m JavaFX’s properties and the Model-View-Controller pattern help
us deal with the complexity of GUI programming.

The full Todos example is online: TodoList.java.

CS 1331 (Georgia Tech) 1/11


http://www.cs1331.org/code/javafx/TodoList.java

