Introduction to Object-Oriented Programming
Linked Lists

Christopher Simpkins

chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) 1/13



Linked Lists

m Dynamic data structures
m Singly linked lists

m Generic linked lists

m Doubly linked lists

CS 1331 (Georgia Tech) 2/13



Dynamic Data Structures

B ArrayList was our first dynamically-allocated data structure.
B ArrayList is a hybrid static and dynamically allocated data
structure.
B ArraylList automatically allocates a larger backing (static) array
when the capacity of its current backing array is exceeded.
m In a purely dynamic data structure, storage for each new element
is allocated when the element is added.

m A purely dynamically allocated data structure is (slightly) more
space efficient, but slower because heap allocation occurs every
time an element is added.

CS 1331 (Georgia Tech) 3/13



Linked Data Structures
The core concept in a linked data structures is the node.

m A data structure is a collection of nodes linked in a particular way.
m A node holds a data item and links to other nodes.

m The nature of the links determines the kind of data structure, e.g.,
singly linked list, doubly linked list, binary tree, etc.

Here is a depiction of a node for a singly linked list and code that
implements such a node (public members for brevity)

Data

Node Link

CS 1331 (Georgia Tech)

}

public
public

public
this
this
}

.data
.next

private class Node {

Object data;
Node next;

Node (Object data, Node next) {
data;
next;

4/18



Singly Linked Lists

A singly linked list
m Contains a pointer to a “head” node (null if empty).

m The head node’s next points to the second node, the second
node’s next points to the third node, and so on.

m The next reference of the last node is null

Here’s a depiction of the nodes in a singly linked list with three
elements:

CS 1331 (Georgia Tech) 5/13



Adding Elements to a Singly Linked List

1. Create a new Node.

New Node:

-
2. Set the next referencq of the new Node to the current head.

head

L~

3. Set the head referencq to the new Node

11

head ——»

/

11

See LinkedList.'lava for the code.
CS 1331 (Georgia Tech) 6/13



http://cs1331.gatech.edu/code/data-structures/LinkedList.java

Finding an ltem in a Linked List

An algorithm for finding an item in a linked list:

foundNode: Node := null
currentNode: Node := LinkedList.head
while currentNode != null && foundNode = null
if currentNode.data = queryltem
foundNode := currentNode
currentNode := currentNode.next

The postcondition of this algorithm is that foundNode will be:

m The node containing the query item, or
m null if the query item is not in the list.

CS 1331 (Georgia Tech) 7/13



Inserting Elements into a Linked List

1. Find the existing Node to insert new element after.

2. Create a new Node.

1

1

3. Set the next reference of the new Node to the next reference of

the existing node.

New Node:

L

4. Set the next reference of the existing node to the new Node.

New Node:

L

See LinkedList.java for the code.
CS 1331 (Georgia Tech)

8/18


http://cs1331.gatech.edu/code/LinkedList.java

Computing the Length of a Linked List

An algorithm for computing the length a linked list:

length: int := 0
currentNode: Node := LinkedList.head
while currentNode != null

length := length + 1

currentNode := currentNode.next

The postcondition of this algorithm is that 1ength will be equal to the

number of nodes in the list.

CS 1331 (Georgia Tech)

9/18



Generic Linked Lists

To make our LinkedList generic we only need to add a type parameter
to the declaration:

public class GenericLinkedList<E> { ...

and replace Object with E in the body of the class.
See GenericLinkedList.java

CS 1331 (Georgia Tech) 10/13


http://cs1331.gatech.edu/code/data-structures/GenericLinkedList.java

Doubly Linked Lists

A doubly linked list simply adds a previous reference to the Node
class so that the list can be traversed forwards or backwards.

private class Node<E> {
E data;
Node<E> next;
Node<E> previous;

public Node (E data, Node<E> next, Node<E> previous) {
this.data = data;
this.next = next;
this.previous = previous;

}

Doubly linked lists work the same, except that the algorithms for

inserting and removing items requires a bit more link fiddling (have to

set previous links as well).
See DoublyLinkedList.java.

CS 1331 (Georgia Tech)

11/13


http://cs1331.gatech.edu/code/data-structures/DoublyLinkedList.java

Running times of List operations

TaBLE 24.1 Time Complexities for Methods in MyArrayList and MyLinkedList

Methods MyArrayList/ArrayList MyLinkedList/LinkedList
add(e: E) o(1) o)
add(index: int, e: E) O(n) O(n)
clear() o(1) o(1)
contains(e: E) O(n) O(n)
get(index: int) o o(n)
index0f(e: E) O(n) O(n)
isEmpty o(l) o(l)
TastIndexOf(e: E) O(n) O(n)
remove(e: E) O(n) O(n)
sizeQ) o(1) o)
remove(index: int) O(n) O(n)
set(index: 1int, e: E) O(n) O(n)
addFirst(e: E) o(n) o(1)
removeFirst() o(n) o)

CS 1331 (Georgia Tech)

12/13



Programming Exercises

Programming Exercise 1
m Add a get (int index) method to GenericLinkedList.
B Add a remove (T item) method to GenericlLinkedList.
Programming Exercise 2

m Implement public static int binarySearch (int[] a,
int v). Return-1ifvisnotin a.

m Bonus: implement public static <T> int
binarySearch (T[] a, T v, Comparator<? super T>
c). Return-1if vis notin a.

m Bonus: for either of the options above, implement your method
using a recursive helper method.

m Bonus question: if we wanted to implement a similar method for a
Collection, how would we do it? Could we define such a binary
search method for any Collection?

m Bonus question 2: what is the running time (Big-O) of binary

search?
CS 1331 (Georgia Tech) 13/13



