
Introduction to Object-Oriented Programming
Loops

Christopher Simpkins
chris.simpkins@gatech.edu

Chris Simpkins (Georgia Tech) CS 1331 Loops 1 / 12

Chris Simpkins (Georgia Tech) CS 1331 Loops 2 / 12

Loops and Iteration

Algorithms often call for repeated action or iteration, e.g. :
“repeat ... while (or until) some condition is true” (looping) or
“for each element of this array/list/etc. ...” (iteration)

Java provides three iteration structures:
while loop
do-while loop
for iteration statement

Chris Simpkins (Georgia Tech) CS 1331 Loops 3 / 12

while and do-while

while loops are pre-test loops: the loop condition is tested before the
loop body is executed
while (condition) { // condition is any boolean expression

// loop body executes as long as condition is true
}

do-while loops are post-test loops: the loop condition is tested after
the loop body is executed
do {

// loop body executes as long as condition is true
} while (condition)

The body of a do-while loop will always execute at least once.

Chris Simpkins (Georgia Tech) CS 1331 Loops 4 / 12

for Statements

The general for statement syntax is:
for(initializer; condition; update) {

// body executed as long as condition is true
}

intializer is a statement
Use this statement to initialize value of the loop variable(s)

condition is tested before executing the loop body to determine
whether the loop body should be executed. When false, the loop
exits just like a while loop
update is a statement

Use this statement to update the value of the loop variable(s) so
that the condition converges to false

Chris Simpkins (Georgia Tech) CS 1331 Loops 5 / 12

for Statement vs. while Statement

The for statement:

for(int i = 0 ; i < 10 ; i++) {
// body executed as long as condition is true

}

is equivalent to:

int i = 0

while (i < 10) {
// body

i++ ;
}

for is Java’s primary iteration structure. In the future we’ll see
generalized versions, but for now for statements are used primarily to
iterate through the indexes of data structures and to repeat code a
particular number of times.

Chris Simpkins (Georgia Tech) CS 1331 Loops 6 / 12

for Statement Examples

Here’s an example from CharCount.java. We use the for loop’s index
variable to visit each character in a String and count the digits and
letters:
int digitCount = 0, letterCount = 0;
for (int i = 0; i < input.length(); ++i) {

char c = input.charAt(i);
if (Character.isDigit(c)) digitCount++;
if (Character.isAlphabetic(c)) letterCount++;

}

And here’s a simple example of repeating an action a fixed number of
times:
for (int i = 0; i < 10; ++i)

System.out.println("Meow!");

Chris Simpkins (Georgia Tech) CS 1331 Loops 7 / 12

http://www.cc.gatech.edu/~simpkins/teaching/gatech/cs1331/code/basics/CharCount.java

for Statement Subtleties

Better to declare loop index in for to limit it’s scope. Prefer:
for (int i = 0; i < 10; ++i)

to:
int i; // Bad. Looop index variable visible outside loop.
for (i = 0; i < 10; ++i)

You can have multiple loop indexes separated by commas:
String mystery = "mnerigpaba", solved = ""; int len = mystery.length();
for (int i = 0, j = len - 1; i < len/2; ++i, --j) {

solved = solved + mystery.charAt(i) + mystery.charAt(j);
}

Note that the loop above is one loop, not nested loops.
Beware of common “extra semicolon” syntax error:
for (int i = 0; i < 10; ++i); // oops! semicolon ends the statement

print(meow); // this will only execute once, not 10 times

Chris Simpkins (Georgia Tech) CS 1331 Loops 8 / 12

Forever

Note that in the context of programming, infinite means “as long as the
program is running.” Here are two idioms for infinite loops. First with
for:
for (;;) {

// ever
}

and with while:
while (true) {

// forever
}

Infinite loops are useful for things like game loops and operating
system routines that poll input buffers or wait for incoming network
connections. In both of these cases the loop is inteded to run for the
duration of the program.
See Loops.java for loop examples.

Chris Simpkins (Georgia Tech) CS 1331 Loops 9 / 12

http://www.cc.gatech.edu/~simpkins/teaching/gatech/cs1331/code/Loops.java

break and continue

Java provides two non-structured-programming ways to alter loop
control flow:

break exits the loop, possibly to a labeled location in the program
continue skips the remainder of a loop body and continues with
the next iteration

Consider the following while loop:
boolean shouldContinue = true;
while (shouldContinue) {

System.out.println("Enter some input (exit to quit):");
String input = System.console().readLine();
doSomethingWithInput(input); // We do something with "exit" too.
shouldContinue = (input.equalsIgnoreCase("exit")) ? false : true;

}

We don’t test for the termination sentinal, “exit,” until after we do
something with it. Situations like these often tempt us to use break ...

Chris Simpkins (Georgia Tech) CS 1331 Loops 10 / 12

breaking out of a while Loop

We could test for the sentinal and break before processing:
boolean shouldContinue = true;
while (shouldContinue) {

System.out.println("Enter some input (exit to quit):");
String input = System.console().readLine();
if (input.equalsIgnoreCase("exit")) break;
doSomethingWithInput(input);

}

But it’s better to use structured programming:
boolean shouldContinue = true;
while (shouldContinue) {

System.out.println("Enter some input (exit to quit):");
String input = System.console().readLine();
if (input.equalsIgnoreCase("exit")) {

shouldContinue = false;
} else {

doSomethingWithInput(input);
}

}

Chris Simpkins (Georgia Tech) CS 1331 Loops 11 / 12

Programming Exercise: Palindromes

Write a program that determines whether a String is a palindrome. A
palindrome is a string of characters that reads the same when
reversed, e.g. “radar”.

Your program should use the first command line argument as the
String to test
You should ignore case, e.g. ’R’ == ’r’
You should ignore spaces, e.g. “a but tuba” is a palindrome
Try to do this with a single for loop

Chris Simpkins (Georgia Tech) CS 1331 Loops 12 / 12

