
Introduction to Object-Oriented Programming
Object-Oriented Programming, Part 1 of 3

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 1 / 16



Introduction to Object-Oriented Programming

Today we’ll learn how to combine all the elements of object-oriented
programming in the design of a program that handles a company
payroll. Object-oriented programming requires three features:

Data abstraction with classes (encapsulation)
Inheritance
Dynamic method binding

That last part, dynamic method binding, provides for polymorphism,
which we’ll learn today.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 2 / 16



Class Hierarchies
Class hierarchies depict the superclass-subclass relationships
between families of related classes. Consider:

Employee

SalariedEmployee HourlyEmployee

Employee is the superclass of HourlyEmployee and
SalariedEmployee
Employee is more general than HourlyEmployee and
SalariedEmployee, e.g., there at least as many Employees as
either HourlyEmployees or SalariedEmployees
HourlyEmployee and SalariedEmployee are richer than
Employee becuse they extend Employee with additional features

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 3 / 16



A SalariedEmployee Class

Let’s add SalariedEmployee to our class hierarchy. Here are the
important pieces:
public final class SalariedEmployee3 extends Employee3 {

private static final int MONTHS_PER_YEAR = 12;
private final double annualSalary;

public SalariedEmployee3(String aName, Date aHireDate,
double anAnnualSalary) {

super(aName, aHireDate);
disallowZeroesAndNegatives(anAnnualSalary);
annualSalary = anAnnualSalary;

}
public double getAnnualSalary() {

return annualSalary;
}
public double monthlyPay() {

return annualSalary / MONTHS_PER_YEAR;
}
// ...

}

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 4 / 16



Our Employee Class Hierarchy

We now have all the classes in our hierarchy:

Employee

SalariedEmployee HourlyEmployee

But our classes aren’t well factored.
SalariedEmployee3 and HourlyEmployee3 have duplicate
copies of disallowZeroesAndNegatives
SalariedEmployee3 and HourlyEmployee3 both have
monthlyPay methods, but these methods are not polymorphic
because they’re not defined in Employee3

Let’s refactor our Employee class hierarchy to give it a clean
object-oriented design.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 5 / 16



A Company Spec

Before we make monthlyPay polymorphic, we need an application to
demonstrate why doing so is useful. Let’s design a Company class
with the following specs:

A Company4 has exactly 9 employees (becuase we haven’t
learned about dynamically resized data structures yet)
A company calculates its monthly payroll by adding up the
monthly pay of each of its employees.
A company can have any mix of hourly and salaried employees

That last bullet motivates the use of polymorphism.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 6 / 16



Maintaining an Employee List

With our current class hierarchy, we need to maintain separate (partial)
arrays of hourly and salaried employees. Because they’re partial
arrays we also need to keep track of how many of each type of
employee we have.
public class Company {

private HourlyEmployee[] hourlyEmployees;
private int numHourlyEmployees = 10;
private SalariedEmployee[] salariedEmployees;
private int numSalariedEmployees = 10;

public Company() {
hourlyEmployees = new HourlyEmployee[numHourlyEmployees];
salariedEmployees = new SalariedEmployee[numSalariedEmployees];

}
}

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 7 / 16



Calculating Payroll the Hard Way

With our employee lists, calculating payroll is accomplished with two
loops:
public class Company { // hypothetical

public double monthlyPayroll() {
double payroll = 0.0;
for (int i = 0; i < numHourlyEmployees; ++i) {

payroll += hourlyEmployees[i].monthlyPay();
}
for (int i = 0; i < numSalariedEmployees; ++i) {

payroll += salariedEmployees[i].monthlyPay();
}
return payroll;

}
// ..

}

Seems reasonable. But ...
What if we want to add a third type of employee?

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 8 / 16



Calculating Payroll the Easy Way

We’d like to be able to calculate payroll with a single loop over all
employees:
public class Company4 {

public double monthlyPayroll() {
double payroll = 0.0;
for (Employee employee: employees) {

payroll += employee.monthlyPay();
}
return payroll;

}
// ..

}

Much cleaner and less error-prone (e.g., we don’t have the
book-keeping of two partial arrays). To be able to code like this we
need to update the design of our Employee class hierarchy.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 9 / 16



A More General Employee List
The first step is to store one array of Employees:
public class Company4 {

private Employee3[] employees;
public Company4() {

employees = ...;
}
public double monthlyPayroll() {

double payroll = 0.0;
for (int i = 0; i < employees.length; ++i) {

payroll += employees[i].monthlyPay();
}
return payroll;

}
}

Much better. But it doesn’t compile. Why?
$ javac Company.java
Company.java:15: cannot find symbol
symbol : method monthlyPay()
location: class Employee

payroll += employees[i].monthlyPay();

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 10 / 16



Abstract Classes

We need Employee to declare a monthlyPay method for subclasses
to define. Since we don’t have a general definition for monthlyPay
suitable for Employee, Employee will need to be abstract.
public abstract class Employee4 {

// ...
public abstract double monthlyPay();

}

An abstract class
cannot be instantiated,
may contain zero or more abstract methods, and
subclasses must either provide an implementation for abstract
methods, or be declared abstract themselves.

This makes sense for our Employee4 class. We don’t ever want to
instantiate Employee4 objects. Employee4 simply defines the
common aspects of all employees, with subclasses filling in the details.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 11 / 16



The Employee4 Class Hierarchy

Employee4 and its monthlyPay method are abstract.
monthlyPay is polymorphic because it is overriden in
subclasses.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 12 / 16



Polymorphic Methods
public class Company4 {

private Employee4[] employees;
public double monthlyPayroll() {

double payroll = 0.0;
for (Employee4 employee: employees) {

payroll += employees.monthlyPay();
}
return payroll;

}
}

The static type of the elements of employees is Employee4
The dynamic type can be any subclass of Employee4, in this
case they are all SalariedEmployee4 and HourlyEmployee4
When a method is invoked on an object, the method of the
dynamic (run-time) type is used, no matter what the static
(compile-time) type is.

So though the static types of employees elements is Employee,
the monthlyPay methods invoked on them are the ones defined in
SalariedEmployee4 and HourlyEmployee4.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 13 / 16



Refactoring Duplicate Code in a Class Hierarchy
Recall the definition of disallowZeroesAndNegatives:
private void disallowZeroesAndNegatives(double ... args) {

boolean shouldThrowException = false;
String nonPositives = "";
for (double arg: args) {

if (arg <= 0.0) {
shouldThrowException = true;
nonPositives += arg + " ";

}
}
if (shouldThrowException) {

String msg = "Following arguments were <= 0: " + nonPositives;
throw new IllegalArgumentException(msg);

}
}

This method is duplicated in HourlyEmployee4 and
SalariedEmployee4
Let’s move the definition of disallowZeroesAndNegatives
into Employee5 so it will be shared (rather than duplicated) in
SalariedEmployee5 and HourlyEmployee5.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 14 / 16



protected Members

private members of a superclass are effectively invisible to
subclasses. To make a member accessible to subclasses, use
protected:
public abstract class Employee5 {

protected void disallowZeroesAndNegatives(double ... args) {
// ...

}
// ...

}

protected members
are accessible to subclasses and other classes in the same
package, and
can be overriden in subclasses.

protected members provide encapsulation within a class hierarchy
and package, private provides encapsulation within a single class.

Later we’ll see a better way to re-use.
CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 15 / 16



Programming Exercise

Expand on the Animal and Dog exercise by making the following
changes:

Make the speak method in Animal abstract. What additional
change to Animal will you have to make?
Add a Cat class which overrides speak appropriately.
Create a Zoo class that is just like Kennel except that it maintains
an array of Animal (instead of Dog)

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 1 of 3 16 / 16


