
Introduction to Object-Oriented Programming
Object-Oriented Programming, Part 2 of 3

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 1 / 16

Fitting Classes Into the Java Hierarchy

java.lang.Object defines several methods that are designed to be
overriden in subclasses (JLS §4.3.2:)

The method equals(Object) defines a notion of object equality,
which is based on value, not reference, comparison.
The method hashCode is very used together with
equals(Object) in hashtables such as java.util.Hashmap.
The method toString returns a String representation of the
object.
The method clone is used to make a duplicate of an object (don’t
touch).
The method finalize is run just before an object is destroyed
(don’t touch).

A class hierarchy is also sometimes called a framework.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 2 / 16

http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.3.2

When to Override the equals(Object) Method

The default implementation of equals(Object) in
java.lang.Object is object identity - each object
equals(Object) only itself.
When should a class override equals(Object)?

When logical equality differs from object identity, as is the case for
value classes like Date

When classes don’t implement instance control.
Instance control means that a class ensures that there is only one
instance of a class.

When a suitable equals(Object) method is not provided by a
superclass.

More important than recognizing when to override equals(Object)
is knowing how to override equals(Object).

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 3 / 16

How to Override the equals(Object) Method

Obey the general contract of equals(Object) (JLS), which says
that equals(Object) defines an equivalence relation. So, for
non-null references, equals(Object) is

reflexive - any object equals(Object) itself
symmetric - if a.equals(Object)(b) is true then
b.equals(a) must be true
transitive - if a.equals(b) and b.equals(c) are true then
a.equals(c) must be true
consistent - if a and b do not change between invocations of
a.equals(b) or b.equals(a) then each invocation must
return the same result
a.equals(null) must always return false.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 4 / 16

A Recipe for Implementing equals(Object)

Obeying the general contract of equals(Object) is easier if you
follow these steps.

1 Ensure the other object is not null.
2 Check for reference equality with == (are we comparing to self?).
3 Check that the other object is an instanceof this object’s class.
4 Cast the other object to this’s type (guaranteed to work after

instanceof test)
5 Check that each “significant” field in the other object
equals(Object) the corresponding field in this object.

After seeing an example applicaiton of this recipe we’ll motivate the
proper implementation of equals(Object) methods by introducing
our first collection class, ArrayList.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 5 / 16

An Example equals(Object) Method

Assume we have a Person class with a single name field.
1 Ensure the other object is not null.
2 Check for reference equality with == (are we comparing to self?).
3 Check that the other object is an instanceof this object’s class.
4 Cast the other object to this’s type (guaranteed to work after

instanceof test)
5 Check that each “significant” field in the other object
equals(Object) the corresponding field in this object.

Applying the recipe:
public boolean equals(Object other) {

1: if (null == other) { return false; }
2: if (this == other) { return true; }
3: if (!(other instanceof Person)) { return false; }
4: Person that = (Person) other;
5: return this.name.equals(that.name);

}

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 6 / 16

Arrays and ArrayList

Arrays are fixed-size collections of any data types, including
primitives
ArrayLists are dynamically-allocated (i.e., automatically
resized) collections of reference types (not primitives - but we’ll
talk about autoboxing).
ArrayLists use arrays internally, but this isn’t important to know
for basic use.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 7 / 16

ArrayList Basics

Create an ArrayList with operator new:
ArrayList tasks = new ArrayList();

Add items with add():
tasks.add("Eat");
tasks.add("Sleep");
tasks.add("Code");

Traverse with for-each loop:
for (Object task: tasks) {

System.out.println(task);
}

Note that the for-each loop implicitly uses an iterator.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 8 / 16

Primitives in Collections

ArrayLists can only hold reference types. So you must use wrapper
classes for primitives:
ArrayList ints = new ArrayList();
ints.add(new Integer(42));

Java auto-boxes primitives when adding to a collection:
ints.add(99);

But auto-unboxing can’t be done when retrieving from an untyped
collection:
int num = ints.get(0); // won’t compile

The old way to handle this with untyped collections is to cast it:
int num = (Integer) ints.get(0); // auto-unboxing on assignment to int

We’ll see a better way to handle this with generics.
See ArrayListPrimitivesDemo.java for more.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 9 / 16

http://www.cs1331.org/code/collections/ArrayListPrimitivesDemo.java

The equals(Object) Method and Collections

A class whose instances will be stored in a collection must have a
properly implemented equals(Object) method.
The contains method in collections uses the equals(Object)
method in the stored objects.
The default implementation of equals(Object) (object identity -
true only for same object in memory) only rarely gives correct
results.
Note that hashcode() also has a defualt implementation that
uses the object’s memory address. As a rule, whenever you
override equals(Object), you should also override
hashcode1.

1hashcode() is used in objects that are keys in Maps. You’ll learn about Maps
later in the course.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 10 / 16

equals(Object) Method Examples
In this simple class hierarchy, FoundPerson has a properly
implemented equals(Object) method and LostPerson does not.

abstract static class Person {
public String name;
public Person(String name) {

this.name = name;
}

}
static class LostPerson extends Person {

public LostPerson(String name) { super(name); }
}
static class FoundPerson extends Person {

public FoundPerson(String name) { super(name); }

public boolean equals(Object other) {
if (this == other) { return true; }
if (!(other instanceof Person)) { return false; }
return ((Person) other).name.equals(this.name);

}
}

Let’s examine the code in ArrayListEqualsDemo.java.
CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 11 / 16

http://www.cs1331.org/code/collections/ArrayListEqualsDemo.java

Override-Equivalence

Two methods are override-equivalent if:
they have the same name,
they have the same parameter lists, and
their return values are covariant

These rules lead to a few pitfalls:

You can’t define override-equivalent methods in the same class.
In subclasses it’s easy to accidentally overload a superclass
method when you meant to override.

Let’s look at a few examples to help us understand these rules.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 12 / 16

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.2
http://docs.oracle.com/javase/tutorial/java/javaOO/returnvalue.html

Covariant Returns
covariantReturn is covariant in Person and LostPerson:
abstract static class Person {

public String name;
public Person(String name) { this.name = name; }
public Object covariantReturn() { return new Object(); }

}
static class LostPerson extends Person {

public LostPerson(String name) { super(name); }
@Override public LostPerson covariantReturn() { return this; }

}

... because LostPerson is a subtype of Object.
But SubLostPerson won’t compile:
static class SubLostPerson extends LostPerson {

public SubLostPerson(String name) { super(name); }
@Override public Person covariantReturn() { return this; }

}

... becuase its covariantReturn’s return type is contravariant, that
is, Person is a supertype of LostPerson.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 13 / 16

Non-Covariant Return

NoncompilingPerson won’t compile because int is not a subtype
of boolean and because return-type covariance only applies to
reference types, not primitives.

static class NonCompilingPerson extends Person {
public NonCompilingPerson(String name) { super(name); }

/**
* This method won’t compile because int is not a subtype of

boolean.

*/
public int equals(Object other) {

if (null == other) return 0;
if (this == other) return 1;
if (!(other instanceof Person)) return 0;
return ((Person) other).name.equals(this.name) ? 1 : 0;

}
}

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 14 / 16

Accidental Overloading

It’s easy to make this mistake:
static class OverloadedPerson extends Person {

public OverloadedPerson(String name) { super(name); }

public boolean equals(OverloadedPerson other) {
if (null == other) { return false; }
if (this == other) { return true; }
if (!(other instanceof OverloadedPerson)) { return false; }
return ((OverloadedPerson) other).name.equals(this.name);

}
}

Signature of equals in Object is public boolean
equals(Object other) - parameter type is Object.
In OverloadedPerson we’ve accidentally overloaded equals
instead of overriding equals by making the parameter type
OverloadedPerson.

Using the @Override annotation helps you avoid this mistake.
CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 15 / 16

Closing Thoughts

java.lang.Object is the root superclass of every Java class.
"Classic" Java collections are general because they hold elements
of type Object

Java collections and many programming idioms rely on the
methods defined in Object, some of which must be overridden in
subclasses in order for instances of these subclasses to function
properly as elements of collections.
Overriding equals is straightforward if you follow the recipe.
There’s more to overriding equals – in particular, overriding
hashcode – but now we know the basic concepts.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 2 of 3 16 / 16

