Introduction to Object-Oriented Programming
Object-Oriented Programming, Part 3 of 3

Christopher Simpkins

chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) 1/8

The Employee Class Hierarchy

Let’'s add a summer intern class to our Employee hierarchy.

Employee

VAV

| SalariedEmploy H HourlyEmploy |

m We can get the payRoll for the current month by making use of the
polymorphic getMonthlyPay method.

m What if we wanted to get the payroll for a particular month?

Let’s overload monthlyPay so we can get the payroll for any month,
not just the current month.
CS 1331 (Georgia Tech) 2/8

Enum Types

Enums are data types that have a predefined set of constant values
(JLS §8.9, Java Enum Tutorial)
For example:

public enum Month {
JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC

}

defines an enum type called Month that can take on only one of the
predefined constants Month.JAN, Month.FEB, ..., Month.DEC
m Enum types are a class.

m Java automatically defines convenience methods for enum types,
like valueOf (String) and values () (See the Enum API).

m Because they define a class, enum types can include
programmer-defined additional constructors and methods.

CS 1331 (Georgia Tech) 3/8

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.9
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Enum.html

Overloading Methods

An overloaded method is a set of methods with the same names but
different signatures (parameter lists)! (JLS §8.4.9).

Here’s an overloaded monthlyPay for SummerIntern6, along with a
helper method demonstrating the use of the Month enum:

public double monthlyPay () {
Date today = new Date();
Month thisMonth = Month.values () [today.getMonth()];
return monthlyPay (thisMonth) ;
}
public double monthlyPay (Month month) {
return isSummer (month) ? super.monthlyPay() : 0.0;
}

private boolean isSummer (Month month) {

return month == Month.JUN
| | month == Month.JUL
| | month == Month.AUG;

}
_ m In which classes should these methods be declared? Defined?

1

More precisely, two methods with the same name whose signatures are not
CS 1331 (Georgia Tech) 4/8

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.9

The Employee Class Hierarchy in UML

Employee

+ getName(): String

+ getHireDate(): String

+ monthlyPay(): double

+ monthlyPay(month: Calendar): double

[SalariedEmployee | HourlyEmployee
|+ getAnnualSalary(): double | + getHourlyWage(): double
+ getMonthlyHours(): double

Summerintern

m ltalicized names are abstract (e.g., Employee is an abstract class,
+ getMonthlyPay(month: Month) is an abstract method).

m We've only shown public methods (denoted by the ’+’ symbols in
front of their names).

m Each class has all the public methods in its superclasses, and
possibly additional methods.

B SummerInterné6 only specializes HourlyEmployee6, thatis, it
modifies some behavior of its superclass but does not add any
additional behavior.

CS 1331 (Georgia Tech) 5/8

Forecasting Payroll

Now with our overloaded mont 1yPay method we can forecast payroll:

Company6 c = new Companyb () ;

System.out.println ("Monthly payroll this month: " +
c.monthlyPayroll());
sn",

System.out.printf ("Monthly payroll for May: %.2f
c.monthlyPayroll (Month.MAY))
System.out.printf ("Monthly payroll for June: %.2f%n",
c.monthlyPayroll (Month.JUN))

’

’

CS 1331 (Georgia Tech) 6/8

Inheritance Hinders Re-use

Recall the disallowZeroesAndNegatives method that we
refactored so that it’s in the Employee class and inherited by
subclasses:

public abstract class Employee6 {
protected void disallowZeroesAndNegatives (double ... args) {

VA

}

m There’s nothing about this method that is specific to Employees

B disallowZeroesAndNegatives could be useful in other
classes that are not part of the Employee class hierarchy.

m Since it's protected, it can’t be used outside of the Employee
class hierarchy or package.

In software engineering terms, we say that the code in Employee
lacks cohesion - it has parts that aren’t part of the Employee concept.
Such a design hinders reuse.

CS 1331 (Georgia Tech) 7/8

Favor Composition over Inheritance

If we move these protected methods into a separate class, like
ValidationUtils.java

public class ValidationUtils {
public static void disallowNullArguments (Object ... args) {
public static void disallowZeroesAndNegatives (double ... args)

}
}

{

we can use them anywhere, e.g.,

public Employee (String aName, Date aHireDate) {
ValidationUtils.disallowNullArguments (aName, aHireDate);
name = aName;
hireDate = aHireDate;

}

With this refactoring, we have our final versions of Employee.java,
HourlyEmployee.java, and SalariedEmployee.java

CS 1331 (Georgia Tech)

http://www.cs1331.org/code/employee/ValidationUtils.java
http://www.cs1331.org/code/employee/Employee.java
http://www.cs1331.org/code/employee/HourlyEmployee.java
http://www.cs1331.org/code/employee/SalariedEmployee.java

