
Introduction to Object-Oriented Programming
Object-Oriented Programming, Part 3 of 3

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 3 of 3 1 / 8

The Employee Class Hierarchy

Let’s add a summer intern class to our Employee hierarchy.

Employee

SalariedEmployee HourlyEmployee

SummerIntern

We can get the payRoll for the current month by making use of the
polymorphic getMonthlyPay method.
What if we wanted to get the payroll for a particular month?

Let’s overload monthlyPay so we can get the payroll for any month,
not just the current month.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 3 of 3 2 / 8

Enum Types

Enums are data types that have a predefined set of constant values
(JLS §8.9, Java Enum Tutorial)
For example:
public enum Month {

JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC
}

defines an enum type called Month that can take on only one of the
predefined constants Month.JAN, Month.FEB, ..., Month.DEC

Enum types are a class.
Java automatically defines convenience methods for enum types,
like valueOf(String) and values() (See the Enum API).
Because they define a class, enum types can include
programmer-defined additional constructors and methods.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 3 of 3 3 / 8

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.9
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Enum.html

Overloading Methods

An overloaded method is a set of methods with the same names but
different signatures (parameter lists)1 (JLS §8.4.9).

Here’s an overloaded monthlyPay for SummerIntern6, along with a
helper method demonstrating the use of the Month enum:
public double monthlyPay() {

Date today = new Date();
Month thisMonth = Month.values()[today.getMonth()];
return monthlyPay(thisMonth);

}
public double monthlyPay(Month month) {

return isSummer(month) ? super.monthlyPay() : 0.0;
}
private boolean isSummer(Month month) {

return month == Month.JUN
|| month == Month.JUL
|| month == Month.AUG;

}

In which classes should these methods be declared? Defined?
1More precisely, two methods with the same name whose signatures are not

override-equivalent are overloaded.CS 1331 (Georgia Tech) Object-Oriented Programming, Part 3 of 3 4 / 8

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.9

The Employee Class Hierarchy in UML
+ getName(): String
+ getHireDate(): String
+ monthlyPay(): double
+ monthlyPay(month: Calendar): double

Employee

+ getAnnualSalary(): double
SalariedEmployee

+ getHourlyWage(): double
+ getMonthlyHours(): double

HourlyEmployee

SummerIntern

Italicized names are abstract (e.g., Employee is an abstract class,
+ getMonthlyPay(month: Month) is an abstract method).
We’ve only shown public methods (denoted by the ’+’ symbols in
front of their names).
Each class has all the public methods in its superclasses, and
possibly additional methods.
SummerIntern6 only specializes HourlyEmployee6, that is, it
modifies some behavior of its superclass but does not add any
additional behavior.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 3 of 3 5 / 8

Forecasting Payroll

Now with our overloaded montlyPay method we can forecast payroll:
Company6 c = new Company6();
System.out.println("Monthly payroll this month: " +

c.monthlyPayroll());
System.out.printf("Monthly payroll for May: %.2f%n",

c.monthlyPayroll(Month.MAY));
System.out.printf("Monthly payroll for June: %.2f%n",

c.monthlyPayroll(Month.JUN));

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 3 of 3 6 / 8

Inheritance Hinders Re-use

Recall the disallowZeroesAndNegatives method that we
refactored so that it’s in the Employee class and inherited by
subclasses:
public abstract class Employee6 {

protected void disallowZeroesAndNegatives(double ... args) {
// ...

}
}

There’s nothing about this method that is specific to Employees
disallowZeroesAndNegatives could be useful in other
classes that are not part of the Employee class hierarchy.
Since it’s protected, it can’t be used outside of the Employee
class hierarchy or package.

In software engineering terms, we say that the code in Employee
lacks cohesion - it has parts that aren’t part of the Employee concept.
Such a design hinders reuse.

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 3 of 3 7 / 8

Favor Composition over Inheritance

If we move these protected methods into a separate class, like
ValidationUtils.java
public class ValidationUtils {

public static void disallowNullArguments(Object ... args) { ... }

public static void disallowZeroesAndNegatives(double ... args) {
... }

}

we can use them anywhere, e.g.,
public Employee(String aName, Date aHireDate) {

ValidationUtils.disallowNullArguments(aName, aHireDate);
name = aName;
hireDate = aHireDate;

}

With this refactoring, we have our final versions of Employee.java,
HourlyEmployee.java, and SalariedEmployee.java

CS 1331 (Georgia Tech) Object-Oriented Programming, Part 3 of 3 8 / 8

http://www.cs1331.org/code/employee/ValidationUtils.java
http://www.cs1331.org/code/employee/Employee.java
http://www.cs1331.org/code/employee/HourlyEmployee.java
http://www.cs1331.org/code/employee/SalariedEmployee.java

