
Pro Java

Christopher Simpkins
chris.simpkins@gatech.edu

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 1 / 18

Pro Java

You know the basics of Java. Today you’ll learn a few baics properties
of professional Java projects, including

the classpath,
separating source and compiler output,
project directory layout,
packages,
jar files, and
using an IDE.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 2 / 18

The Classpath

Just as your operating system shell looks in the PATH environment
variable for executable files, JDK tools (such as javac and java) look
in the CLASSPATH for Java classes. To specify a classpath:

set an environment variable named CLASSAPTH, or
specify a classpath on a per-application basis by using the -cp
switch. The classpath set with -cp overrides the CLASSPATH
environment variable.

Don’t use the CLASSPATH environment variable. If it’s already set,
clear it with (on Windows):
C:> set CLASSPATH=

or (on Unix):
$ unset CLASSPATH

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 3 / 18

Specifying a Classpath
A classpath specification is a list of places to find .class files and
other resources. Two kinds of elements in this list:

directories in which to find .class files on the filesystem, or
.jar files that contain archives of directory trees containing
.class files and other files (more later).

To compile and run a program with compiler output (.class files) in
the current directory and a library Jar file in the lib directory called
util.jar, you’d specify the classpath like this:
$ ls -R # -R means recursive (show subdirectory listings)
MyProgram.java AnotherClass.java

./lib:
util.jar
$ javac -cp .:lib/util.jar *.java # : separates classpath elements
$ java -cp .:lib/util.jar MyProgram # would be ; on Windows

Notice that you include the entire classpath in the -cp, which includes
the current directory (. means “current directory”).

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 4 / 18

Separating Source and Compiler Output

To reduce clutter, you can compile classes to another directory with -d
option to javac

$ mkdir classes
$ javac -d classes HelloWorld.java
$ ls classes/
HelloWorld.class

Specify classpath for an application with the -cp option to java.
$ java -cp ./classes HelloWorld
Hello, world!

If you really want to keep your project’s root directory clean (and you
do), you can put your source code in another directory too, like src.
$ mkdir src
$ mv HelloWorld.java src/
$ javac -d ./classes src/HelloWorld.java
$ java -cp ./classes HelloWorld
Hello, world!

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 5 / 18

Project Directory Layout

Source Directories
src/main/java for Java source files
src/main/resources for resources that will go on the
classpath, like image files

Output Directories
target/classes for compiled Java .class files and resources
copied from src/main/resources

There’s more, but this is enough for now. More details on the de-facto
standard Java project directory layout can be found at
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 6 / 18

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

Organizing your Code in Packages

All professional Java projects organize their code in packages. The
standard package naming scheme is to use reverse domain name,
followed by project specific packages. So if you’re writing a zombie
game and you’re in the Lab for Interactive AI your application’s base
package would be specified like this (first line of source files):
package edu.gatech.iai.zombie;

and it would be located in a directory under your src/main/java
directory as follows
src/main/java/edu/gatech/iai/zombie

And if you tell javac to put compiler output in target/classes then
the compiled .class file would end up in:
target/classes/edu/gatech/iai/zombie

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 7 / 18

Jar Files

A jar archive, or jar file, is a Zip-formatted archive of a directory tree.
Java uses jar files as a distribution format for libraries.

To create a JAR file: jar cf jar-file input-file(s)

To view the contents of a JAR file jar tf jar-file

To extract the contents of a JAR file: jar xf jar-file or
unzip jar-file

To extract specific files from a JAR file: jar xf jar-file
archived-file(s)

To run an application packaged as a JAR file (requires the
Main-class manifest header): java -jar app.jar

See http://docs.oracle.com/javase/tutorial/deployment/jar/index.html for
more details.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 8 / 18

http://docs.oracle.com/javase/tutorial/deployment/jar/index.html

Reorganizing Blackjack

Let’s apply these organizational practices to an existing application.
Create a directory somewhere on your hard disk called, say,
blackjack

Download a zip file of the Blackjack source to your newly created
project directory. If you have wget installed on your computer1

you can go to your project directory on the command line and do:
$ wget

www.cc.gatech.edu/~simpkins/teaching/gatech/cs2340/code/blackjack/blackjack.zip

1On a mac with Homebrew you can just do brew install wget.
Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 9 / 18

www.cc.gatech.edu/~simpkins/teaching/gatech/cs2340/code/blackjack/blackjack.zip
http://brew.sh/

Dealing with Zip/Jar Files

Before we unzip a zip file it’s a good idea to see what’s in it, which is
easy with jar:
$ jar tf blackjack.zip
Blackjack.java
BlackjackHand.java
BlackjackPlayer.java
Deck.java
HumanPlayer.java
PlayingCard.java
RandomPlayer.java

Notice that unarchiving this zip file will not create a subdirectory, so we
need to do that ourselves (which we already have – blackjack/)
$ mkdir blackjack
$ mv blackjack.zip blackjack/
$ cd blackjack/
$ unzip blackjack.zip
Archive: blackjack.zip
inflating: Blackjack.java
inflating: BlackjackHand.java
inflating: BlackjackPlayer.java
inflating: Deck.java
inflating: HumanPlayer.java
inflating: PlayingCard.java
inflating: RandomPlayer.java

Now we’re ready to reorganize the project source.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 10 / 18

Package Statements

Before we move these soruce files into the project directory structure
(which is somewhat annoyingly deeply nested) we can add package
statements. First, decide on a name:

We’re part of Georgia Tech, so our package name should begin
with edu.gatech

Our "sub-organization" within GT is CS 2340, so we’ll add cs2340
to the package name
Our application name is Blackjack, so that can be the final piece of
our package name.

All of this yields a package name of

edu.gatech.cs2340.blackjack

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 11 / 18

Updating Source Files

We need to add a package statement to the top of each of our source
files (we’ll put everythign in one package).
We can do this with a Unix one-liner:
$ for file in ‘ls *.java‘; \

do printf "package edu.gatech.cs2340.blackjack;\n\n" > $file.new; \
cat $file >> $file.new; \
mv $file.new ‘basename $file .new‘; \

done

OK, it’s a bit of a stretch to call that a one-liner, and I’m sure a real
Unix geek could do it more elegantly, but it works.
$ head -n 5 Blackjack.java
package edu.gatech.cs2340.blackjack;

import java.util.Scanner;

public class Blackjack {

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 12 / 18

Creating the Directory Structure

Remember:
The root of the source directory is src/main/java
The source files go in a directory structure that matches the
package name under the source root

Use mkdir -p to create the whole nested directory structure:
$ mkdir -p src/main/java/edu/gatech/cs2340/blackjack
$ mv *.java src/main/java/edu/gatech/cs2340/blackjack/
[chris@nijinsky ~/scratch/blackjack]
$ ls -R
blackjack.zip src

[empty intermediate directories elided]

./src/main/java/edu/gatech/cs2340/blackjack:
Blackjack.java Deck.java RandomPlayer.java
BlackjackHand.java HumanPlayer.java
BlackjackPlayer.java PlayingCard.java

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 13 / 18

Compiling and Running

We want compiler output to go into target/classes, so we must
create that directory:

Then we can compile and run from the command line:
$ javac -d target/classes/ -cp target/classes/

src/main/java/edu/gatech/cs2340/blackjack/*.java
[chris@nijinsky ~/scratch/blackjack]
$ java -cp target/classes/ edu.gatech.cs2340.blackjack.Blackjack
What’s your name? Chris
...

It’s useful to know how to do this so you can debug problem with your
IDE or build script, but you’ll normally set up an IDE and an automated
biuld.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 14 / 18

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 15 / 18

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 16 / 18

Using an IDE

Here are a few basic things you need to configrue when using an IDE:
Editor settings for non-awful source code
Source Directory
Classpath
Libraries

The best approach to most of this is to generate an IDE project
configuration from your build specification, e.g., build.xml. Let’s see
how to do these things with Eclipse.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 17 / 18

Closing Thoughts

There’s more “Pro Java” to learn, like Junit and Checkstyle, but
these are the basics.
Speaking of Checkstyle, follow the Java code conventions at
http://www.oracle.com/technetwork/java/codeconv-138413.html.
We’ll learn much more about build automation and Ant.

Chris Simpkins (Georgia Tech) CS 2340 Objects and Design CS 1331 18 / 18

http://www.oracle.com/technetwork/java/codeconv-138413.html

