Introduction to Object-Oriented Programming
Recursion

Christopher Simpkins

chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) 1/11

Recursion

m A recursive processes or data structure is defined in terms of itself
m A properly written recursive function must

m handle the base case, and
m convergence to the base case.

m Failure to properly handle the base case or converge to the base
case (divergence) may result in infinite recursion.

CS 1331 (Georgia Tech) 2/11

The Factorial Function

A mathematical definition: For a non-negative integer n:
if n <A1

fac(n) =
(") {n*fac(n—1) otherwise

m This definition tells us what a factorial is.
m Defined in cases: a base case and a recursive case

Factorial is defined in terms of itself

CS 1331 (Georgia Tech) 3/11

A Recursive Factorial Function

Mathematics provides a rigorous framework for dealing with
notions of what is, computation provides a rigorous
framework for dealing with notions of how to. — SICP

To translate the mathematical definition of factorial (what a factorial is

into a computational defiinition (how to compute a particular factorial),
we need to

m identify the base case(s), and

m figure out how to get our computation to converge to a base case.
For factorial, the solution is straightforward:

public static int fac(int n) {
if (n <= 1) {
return 1;
} else {
return n * fac(n - 1);

}

}

See Fac.java

CS 1331 (Georgia Tech) 4/11

http://www.cs1331.org/code/algorithms/Fac.java

The Substitution Model of Function Evaluation

m Functions are evaluated in an eval-apply cycle: function
arguments are evaluated (which may in turn require function
evaluation), then the function is applied to the arguments.

m The substitution model of evaluation is a tool for understanding
function evaluation in general, and recursive processes in
particular.

Here’s fac (5):

fac (5)

5 x fac(4)

5 % 4 x fac(3)

3 * fac(2)

* 2 x fac(l)
* 2 x 1

* 2

*
*
*
*
*

3
3
3
6

[C AN RN B C BN C B E)]

O * * * ok X %

CS 1331 (Georgia Tech) 5/11

Activation Records

m Recursive subprograms cannot use statically allocated local
variables, because each instance of the subprogram needs its
own copies of local variables

m Most modern languages allocate local variables for functions on
the run-time stack.

m The system provides a stack pointer pointing to the next available
storage space on the stack.

m Subprogram instances use a frame pointer that points to their
activation record, or stack frame, which contains its copies of local
variables

CS 1331 (Georgia Tech) 6/11

Activation Record Example

Consider this simplified example code (type annotations elided for

brevity):
void main(args) {
foo();
}
int foo() {
int r = 3;

return fac(r);
}
int fac(n) {
if (n <=1) {
return 1
} else {
return n * fac(n-1)
}
}

The stack just before fac returns with 6:

main frame

args = ... in main

foo frame

r=3in foo
return value (TBD)

fac(3) frame

parameter n = 3 in fac
return value (TBD)

fac(2) frame

parameter n = 2 in fac
return value (TBD)

fac(1) frame

parameter n = 1 in fac
return value (1 by definition)

CS 1331 (Georgia Tech)

7/11

Stack Overflow

m The run-time stack is finite in size.

m If you put too many activation records on the stack (for example by
calling a recursive function with a “large” argument), you will
overflow the stack.

$ java Fac 10000

facLoop (10000) =0

Exception in thread "main" java.lang.StackOverflowError
at Fac.faclIter (Fac.java:35)
at Fac.faclter (Fac.java:38)
at Fac.facIter (Fac.java:38)

Three ways to deal with this:
m limit input size (brittle — how do you know limit on a particular
machine?),
m increase stack size (brittle — how do you know how big), or
m replace recursion with iteration.

CS 1331 (Georgia Tech) 8/11

Looping is Imperative Recursion

public static int facLoop (int n)
int factorialAccumulator = 1;
for (int x = n; x > 0; x——) {

factorialAccumulator x= x;

{

}

return factorialAccumulator;

m The base case is the termination condition for the loop.
m The loop variable converges to the termination condition.
m We “accumulate” the answer in the loop.

Recursive definitions are often more natural, but imperative/iterative
definitions often perform better.

CS 1331 (Georgia Tech) 9/11

Tail Recursion - Recursive lteration

private static int facTail(int n) {
return faclter (n, 1);
}
private static int facIter(int n, int accum) {
if (n <= 1) {
return accum;
} else {
return facIter(n - 1, n * accum);
}
}

Tail call optimization creates an iterative, rather than a recursive
process:

facTail (5);
facIter (5, 1);
faclter (4, 5);
facIter (3, 20);
facIter (2, 60);
facIter(l, 120);
120

Note: Java does not optimize tail calls, but many:languages do.
(S 1331 (Gen1yic: Tech)

Closing Thoughts

m Remember: A properly written recursive function must

m handle the base case, and
m convergence to the base case.

m Today we learned recursive processes. We'll also learn recursive
data structures.

CS 1331 (Georgia Tech) 1/11

