
Introduction to Object-Oriented Programming
Review 2: Object-Oriented Programming

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 1 / 14



Topics in the OOP Block

Inheritance
Polymorphism
Abstract classes
Interfaces
The equals(Object) method
Overriding versus Overloading
Enums
Exceptions

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 2 / 14



Inheritance and Polymorphism

Consider
public abstract class Animal { public abstract void speak(); }
public class Mammal extends Animal {

public void speak() { System.out.println("Hello!"); }
}
public class Dog extends Mammal {

public void speak() { System.out.println("Woof, woof!"); }
public void wagTail() { System.out.println("(wags tail)"); }

}
public class Cat extends Mammal {

public void speak() { System.out.println("Meow!"); }
}

We’ll use these classes in the examples in the remaining slides.

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 3 / 14



Assignments

A reference variable has a compile-time type, and refers to an object
which has a run-time type.

The type of the l-value (to the left of the = symbol) in an
assignment statement is the compile-time type
The type of the r-value (to the right of the = symbol) in an
assignment statement is the run-time type
For reference assignments the type of the r-value must be a
subclass of the type of the l-value
Remember that every class is a subclass of itself.

So this is fine:
Animal fido = new Dog();

But this is not:
Dog spot = new Mammal(); // Error: Mammal not a subclass of Dog

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 4 / 14



Casting and Method Binding

Casting affects compile-time types (some would say “casting shuts the
compiler up”) but method binding is always based on run-time types.
So
Dog fido = new Dog();
((Mammal) fido).speak();

Produces
Woof, woof!

Even though Mammals say “Hello!” because the run-time type of spot
is still Dog.

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 5 / 14



Upcasting and Downcasting

The assignment statements we’ve seen so far are examples of implicit
upcasting.

Upcasting means treating a reference as an instance of one of its
superclasses.
Upcasting is safe becuase every object contains the elements of
each of its superclasses.
Downcasting means treating a reference as an instance of one of
its subclasses
Downcasting is not safe in general because subclasses may add
methods not present in superclasses. This is why Java doesn’t
implicitly downcast in assignment statements.

Think of upcasting as “going up” the class hierarchy and downcasting
as “going down” the class hierarchy.

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 6 / 14



Upcasting and Downcasting Examples

Consider the following:
1: Mammal mittens = (Mammal) new Cat(); // Safe
2: Mammal sparky = new Mammal();
3: // Compiles, but will cause a ClassCastException at run-time,
4: Dog huh = (Dog) sparky;
5: // so we won’t even get here.
6: huh.wagTail();

The upcast in line 1 is fine.
The downcast in line 4 will compile but will cause a
ClassCastException at run-time.
We won’t even get to line 6 due to the exception, which is good
because a mammal doesn’t have a wagTail method. This is
what the ClassCastException is guarding against.

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 7 / 14



Java’s Exception Hierarchy

Most (checked) exceptions will subclass
Exception

Most uncheked exceptions will subclass
RuntimeException

Error is for compiler hackers. Don’t
use it directly.

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 8 / 14



Catch or Declare
Checked exceptions, sublcasses of Throwable that are not
subclasses of RuntimeException, must be caught or propagated:

Catch:
public Company(String employeeDataFile) {
// ...
try {

employees = initFromFile(new File(employeeDataFile));

} catch (FileNotFoundException e) {

System.out.println(e.getMessage());
}

}

Declare (propagating the exception):
public Company(String employeeDataFile) throws FileNotFoundException {

// ...
initFromFile(new File(employeeDataFile));

}

Propagating an exception unwinds the stack of methods that led to the
point where the exception was thrown.

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 9 / 14



Exceptions Question
public class A extends Throwable { ... }
public class B extends A { ... }
public class C extends RuntimeException { ... }

Which of the following methods will not compile?
1

A foo(B b) throws C {
if (true) throw new C("c");
return new B("b");

}

2
A bar(B b) throws C {

if (true) throw new RuntimeException("c");
return new B("c");

}

3
A baz(B b) throws B {

if (true) throw new A("a");
return new B("c");

}

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 10 / 14



Exceptions Question - Answer
public class A extends Throwable { ... }
public class B extends A { ... }
public class C extends RuntimeException { ... }

Which of the following methods will not compile?
1

A foo(B b) throws C {
if (true) throw new C("c");
return new B("b");

}

2
A bar(B b) throws C {

if (true) throw new RuntimeException("c");
return new B("c");

}

3 This won’t compile because A is not a subclass of B.
A baz(B b) throws B {

if (true) throw new A("a");
return new B("c");

}
CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 11 / 14



Override Equivalence

Two methods are override-equivalent if:
they have the same name,
they have the same parameter lists, and
their return values are covariant

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 12 / 14

http://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.2
http://docs.oracle.com/javase/tutorial/java/javaOO/returnvalue.html


Override Equivalence Question

Given the following classes:
public class A { ... }
public class B extends A { ... }
public class C extends A { ... }

and the method signature:
public A foo(B b);

Which of the following method signatures is override eqivalent?

1 public B foo(A bar)

2 public C foo(B bar)

3 public C foo(B bar)

4 public B foo(C bar)

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 13 / 14



Override Equivalence Question - Answer

Given the following classes:
public class A { ... }
public class B extends A { ... }
public class C extends A { ... }

and the method signature:
public A foo(B b);

Which of the following method signatures is override eqivalent?

1 public B foo(A bar)

2 public C foo(B bar)
3 public C foo(B bar)

4 public B foo(C bar)

CS 1331 (Georgia Tech) Review 2: Object-Oriented Programming 14 / 14


