
Introduction to Object-Oriented Programming
Stacks and Queues

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) Stacks and Queues 1 / 18

Stacks and Queues

Stacks
Queues
Design Exercise

CS 1331 (Georgia Tech) Stacks and Queues 2 / 18

What is a stack?

1

Fat stacks
1Source:http://blogs.amctv.com/breaking-bad/photo-galleries/

breaking-bad-season-5-episode-photos/
CS 1331 (Georgia Tech) Stacks and Queues 3 / 18

http://blogs.amctv.com/breaking-bad/photo-galleries/breaking-bad-season-5-episode-photos/
http://blogs.amctv.com/breaking-bad/photo-galleries/breaking-bad-season-5-episode-photos/

What is a stack?

2

Tasty stacks
2Source:"Silver dollar pancakes" by Ehedaya at en.wikipedia - Own work (Original

caption: "self-made"). Licensed under Public domain via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Silver_dollar_pancakes.
JPG#mediaviewer/File:Silver_dollar_pancakes.JPGCS 1331 (Georgia Tech) Stacks and Queues 4 / 18

http://commons.wikimedia.org/wiki/File:Silver_dollar_pancakes.JPG#mediaviewer/File:Silver_dollar_pancakes.JPG
http://commons.wikimedia.org/wiki/File:Silver_dollar_pancakes.JPG#mediaviewer/File:Silver_dollar_pancakes.JPG

Gratuitous Super Troopers

3

3Source:
http://sumidiot.blogspot.com/2010/05/super-troopers.html

CS 1331 (Georgia Tech) Stacks and Queues 5 / 18

http://sumidiot.blogspot.com/2010/05/super-troopers.html

Stack ADT

Data:
a list of elements

A stack is a LIFO (last in, first out) data structure with two defining
operations:

push adds an element to the stack
pop returns and removes the most recently added element from
the stack

A stack may also have
an isEmpty operation, which is good style but not strictly
necessary.
a peek operation, which returns the next element to be removed
from the stack with a pop operation but does not remove it.

CS 1331 (Georgia Tech) Stacks and Queues 6 / 18

ArrayList Stack Implementation
A stack can be implemented easily using ArrayList

push adds elements to the end of the ArrayList.
pop removes and returns the last element in the ArrayList.
isEmpty delegates to ArrayList’s isEmpty method.

The entire implementation (as an inner class) is:
static class Stack<E> {

private ArrayList<E> elems = new ArrayList<>();

public void push(E item) {
elems.add(item);

}
public E pop() {

return elems.remove(elems.size() - 1);
}
public boolean isEmpty() {

return elems.isEmpty();
}

}

See ArrayListDataStructures.java.
CS 1331 (Georgia Tech) Stacks and Queues 7 / 18

http://www.cs1331.org/code/data-structures/ArrayListDataStructures.java

Linked Stack Implementation

Here’s a stack implemented with Nodes.
public class LinkedStack<E> {

private class Node<E> {
E data;
Node<E> next;

Node(E data, Node<E> next) { this.data=data; this.next=next; }
}
private Node<E> head;

public void push(E item) {
head = new Node<E>(item, head);

}
public E pop() {

E answer = head.data;
head = head.next;
return answer;

}
public boolean isEmpty() { return (head == null); }

}

Look familiar? See LinkedStack.java.
CS 1331 (Georgia Tech) Stacks and Queues 8 / 18

http://www.cs1331.org/code/data-structures/LinkedStack.java

Queue ADT

Data:
a list of elements

A queue is a FIFO (first in, first out) data structure with two defining
operations:

enqueue adds an element to the queue
dequeue returns and removes the least recently added element
from the queue

A queue may also have
an isEmpty operation, which is good style but not strictly
necessary.
a peek operation, which returns the next element to be removed
from the queue with a dequeue operation but does not remove it.

CS 1331 (Georgia Tech) Stacks and Queues 9 / 18

ArrayList Queue Implementation
A queue can be implemented easily using ArrayList

enqueue adds elements to the end of the ArrayList.
dequeue removes and returns the first element in the ArrayList.
isEmpty delegates to ArrayList’s isEmpty method.

The entire implementation (as an inner class) is:
static class Queue<E> {

private ArrayList<E> elems = new ArrayList<>();

public void enqueue(E item) {
elems.add(item);

}
public E dequeue() {

return elems.remove(0);
}
public boolean isEmpty() {

return elems.isEmpty();
}

}

See ArrayListDataStructures.java.
CS 1331 (Georgia Tech) Stacks and Queues 10 / 18

http://www.cs1331.org/code/data-structures/ArrayListDataStructures.java

Linked Queue Implementation
public class LinkedQueue<E> {

private class Node<E> ...
private Node<E> head;
private Node<E> last;

public void enqueue(E item) {
Node<E> newNode = new Node<E>(item, null);
if (null == head) head = newNode;
if (null != last) last.next = newNode;
last = newNode;

}
public E dequeue() {

E answer = head.data;
head = head.next;
return answer;

}
public boolean isEmpty() { return (head == null); }

}

Essentially same as LinkedStack, except we maintain a last
reference and add elements to the end intead of the head. See
LinkedQueue.java.

CS 1331 (Georgia Tech) Stacks and Queues 11 / 18

http://www.cs1331.org/code/data-structures/LinkedQueue.java

Comparing ArrayList and Linked Implementations

Here, again, is the dequeue method in ArrayListQueue:
private ArrayList<E> elems = new ArrayList<>();
public E dequeue() {

return elems.remove(0);
}

And here is the dequeue method in LinkedQueue:
public E dequeue() {

E answer = head.data;
head = head.next;
return answer;

}

What is the Big-O of the dequeue method in ArrayListQueue?
O(n).

What is the Big-O of the dequeue method in LinkedQueue?
O(1).

CS 1331 (Georgia Tech) Stacks and Queues 12 / 18

Comparing ArrayList and Linked Implementations

Here, again, is the dequeue method in ArrayListQueue:
private ArrayList<E> elems = new ArrayList<>();
public E dequeue() {

return elems.remove(0);
}

And here is the dequeue method in LinkedQueue:
public E dequeue() {

E answer = head.data;
head = head.next;
return answer;

}

What is the Big-O of the dequeue method in ArrayListQueue?
O(n).

What is the Big-O of the dequeue method in LinkedQueue?
O(1).

CS 1331 (Georgia Tech) Stacks and Queues 12 / 18

Comparing ArrayList and Linked Implementations

Here, again, is the dequeue method in ArrayListQueue:
private ArrayList<E> elems = new ArrayList<>();
public E dequeue() {

return elems.remove(0);
}

And here is the dequeue method in LinkedQueue:
public E dequeue() {

E answer = head.data;
head = head.next;
return answer;

}

What is the Big-O of the dequeue method in ArrayListQueue?
O(n).

What is the Big-O of the dequeue method in LinkedQueue?
O(1).

CS 1331 (Georgia Tech) Stacks and Queues 12 / 18

Comparing ArrayList and Linked Implementations

Here, again, is the dequeue method in ArrayListQueue:
private ArrayList<E> elems = new ArrayList<>();
public E dequeue() {

return elems.remove(0);
}

And here is the dequeue method in LinkedQueue:
public E dequeue() {

E answer = head.data;
head = head.next;
return answer;

}

What is the Big-O of the dequeue method in ArrayListQueue?
O(n).

What is the Big-O of the dequeue method in LinkedQueue?
O(1).

CS 1331 (Georgia Tech) Stacks and Queues 12 / 18

Design Exercise

Our data structures implement the core elements of their ADTs, but
there are some problems from an OO design standpoint.

What happens if you call pop on an empty ArrayListStack?
What happens if you call pop on an empty LinkedStack?
What if you start off using an ArrayListStack but then decide
to switch to using a LinkedStack?

CS 1331 (Georgia Tech) Stacks and Queues 13 / 18

Designing Error Reports

Calling pop on an empty ArrayListStack results in:
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: -1

Calling pop on an empty LinkedStack results in:
Exception in thread "main" java.lang.NullPointerException

There are two problems with these error reports:
They leak implementation details across an abstraction boundary -
why should a user know that a stack is implemented using arrays?
They don’t report the actual user error that caused the exception -
calling pop on an empty stack.

We can fix these design problems by throwing
java.util.EmptyStackException in the pop methods if the
stack is empty.

CS 1331 (Georgia Tech) Stacks and Queues 14 / 18

A Stack Interface

We could have both of our implementations implement a Stack
interface:
public interface Stack<E> {

public void push(E item);

public E pop() throws java.util.EmptyStackException;

public abstract boolean isEmpty();
}

Is there a problem with this approach?
java.util.EmptyStackException is-a RuntimExecption,
which is not checked, so implementing classes will not be required
to declare it.

CS 1331 (Georgia Tech) Stacks and Queues 15 / 18

A Stack Interface

We could have both of our implementations implement a Stack
interface:
public interface Stack<E> {

public void push(E item);

public E pop() throws java.util.EmptyStackException;

public abstract boolean isEmpty();
}

Is there a problem with this approach?
java.util.EmptyStackException is-a RuntimExecption,
which is not checked, so implementing classes will not be required
to declare it.

CS 1331 (Georgia Tech) Stacks and Queues 15 / 18

AbstractStack

Abstract classes to the rescue!
public abstract class AbstractStack<E> implements Stack<E> {

public final E pop() {
if (isEmpty()) { throw new java.util.EmptyStackException(); }
return removeNext();

}
protected abstract E removeNext();

}

This pop method will be the one and only pop method used by
subclasses (because it’s final), ensuring that
java.util.EmptyStackException is thrown as we want.
Subclasses must implement removeNext(), which does what
their pop methods used to do and is not visible to clients because
it’s protected.

So all we have to do is extend AbstractStack and change the name
of our pop methods to removeNext.

CS 1331 (Georgia Tech) Stacks and Queues 16 / 18

Closing Thoughts

Today we
learned about two basic data structures: stacks and queues,
learned about alternative data structure implementations,
applied exception programming principles,
designed an OO family of stack classes, and
used Java langauge features (like abstract classes and methods,
final methods, and protected methods) to implement our OO stack
family design.

CS 1331 (Georgia Tech) Stacks and Queues 17 / 18

Programming Exercise

A string is said to have balanced parentheses if for every open paren
there is a matching close paren that comes after it, and no closing
paren occurs before a corresponding open paren. This is an example
of a string with balanced parentheses:
(map (lambda (x) (* x x)) (list 1 2 3 4))

and this is an example of unbalanced parentheses:
(map (lambda (x) (* x x)) (list 1 2 3 4)))

Write a method public static boolean
hasBalancedParens(String s) that returns true if s
contains balanced parentheses, false otherwise.
Write a method public static boolean
isBalanced(String s) that checks for balanced
“parentheses” of many types, for example, ([]) { } is
balanced, but [{] } is not.

CS 1331 (Georgia Tech) Stacks and Queues 18 / 18

